Welcome to visit Advances in New and Renewable Energy!

Research Progress of Lignocellulose Sugar Platform Construction

  • ZHAO Yue ,
  • TAN Xue-song ,
  • LIU Jing ,
  • ZHUANG Xin-shu ,
  • QI Wei ,
  • WANG Qiong ,
  • YU Qiang ,
  • WANG Wen ,
  • YUAN Zhen-hong
Expand
  • 1. CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-12-22

  Revised date: 2015-04-01

  Online published: 2015-04-29

Abstract

Lignocellulose is the most abundant renewable resource on the earth. The enzymatic degradation of the cellulose polysaccharide is one of the key steps of lignocellulose bio-refinery. To enhance efficiency of cellulose hydrolysis, pretreatment is necessary for effectively breaking its recalcitrant structure. In this paper, the pretreatment methods were summarized and the influence of pretreatment methods for enzymatic hydrolysis was also discussed.

Cite this article

ZHAO Yue , TAN Xue-song , LIU Jing , ZHUANG Xin-shu , QI Wei , WANG Qiong , YU Qiang , WANG Wen , YUAN Zhen-hong . Research Progress of Lignocellulose Sugar Platform Construction[J]. Advances in New and Renewable Energy, 2015 , 3(2) : 99 -104 . DOI: 10.3969/j.issn.2095-560X.2015.02.004

References

[1] Zhang C Q, Qi W, Wang F, et al. Ethanol From Corn Stover Using SSF: An Economic Assessment[J]. Energy Sources Part B-Economics Planning and Policy, 2011, 6(2): 136-144.

[2] Somerville C, Youngs H, Taylor C, et al. Feedstocks for lignocellulosic biofuels[J]. Science, 2010, 329(5993): 790-792.

[3] Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. The Catalytic Valorization of Lignin for the Production of  Renewable Chemicals[J]. Chemical Reviews, 2010, 110(6): 3552-3599.

[4] Wang L L, Cao Q, Xie X L. The Effects of Pretreatment of Cellulose and Different Solvents on the Water Absorbency of the Cellulose-Based Superabsorbent Resin[J]. Polymer Materials Science & Engineering, 2013, 29(5): 120-124.

[5] Rojas-Rejon O A, Sanchez A. The impact of particle size and initial solid loading on thermochemical pretreatment of wheat straw for improving sugar recovery[J]. Bioprocess and Biosystems Engineering, 2014, 37(7): 1427-1436.

[6] 杨青丹, 王克勤, 胡婷春, 等. 稻草秸秆辐照酶解工艺优化[J]. 可再生能源, 2011, 29(5): 75-83.

[7] 王克勤, 陈静萍, 彭伟正, 等. 60Co射线处理稻草秸秆对其纤维质酶解效果的影响[J]. 激光生物学报, 2008, 17(1): 38-42.

[8] Kitchaiya P, Intanakul P, Krairiksh M. Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric-pressure[J]. Journal of Wood Chemistry and Technology, 2003, 23(2): 217-225.

[9] Ha M A,  Apperley D C, Evans B W, et al. Fine structure in cellulose microfibrils: NMR evidence from onion and quince[J]. Plant Journal, 1998, 16(2): 183-190.

[10] 余强, 庄新姝, 袁振宏, 等. 高温液态水中甜高粱渣半纤维素水解及其机理[J]. 化工学报, 2012, 63(2): 599-605.

[11] 亓伟, 王闻, 王琼, 等. 木质纤维素预处理技术及其机理研究进展[J]. 新能源进展, 2013, 1(2): 150-158.

[12] Alvira P, Tomas-Pejo E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review[J]. Bioresource Technology, 2010, 101(13): 4851-4861.

[13] Saha B C, Iten L B, Cotta M A, et al. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol[J]. Process Biochemistry, 2005, 40(12): 3693-3700.

[14] 王琼, 亓伟, 余强, 等. 超低浓度马来酸水解玉米芯纤维素[J]. 农业工程学报, 2012, 28(7): 221-227.

[15] Zhang Z H, Zhao B K. Solid acid and microwave assisted hydrolysis of cellulose in ionic liquid[J]. Carbohydrate Research, 2009, 344(15): 2069-2072.

[16] 王华瑜, 张长斌, 贺泓, 等. 磁性碳基磺酸化固体酸催化剂的制备及其催化水解纤维素[J]. 物理化学学报, 2010, 26(7): 1873-1878.

[17] Shuai L, Pan X J. Hydrolysis of cellulose by cellulase mimetic solid catalyst[J]. Energy & Environmental Science, 2012, 5(5): 6889-6894.

[18] Pang J F, Wang A Q, Zheng M Y, et al. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures[J]. Chemical Communications, 2010, 46(37): 6935-6937.

[19] Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1): 10-18.

[20] 张爱萍, 谢君. 生物质制乙醇预处理方法的研究进展[J]. 华南农业大学学报, 2014, 35(4): 77-84.

[21] Kumar P, Barrett D M, Delwiche M J, et al. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3713-3729.

[22] Cheng Y S, Zheng Y, Yu C W, et al. Evaluation of High Solids Alkaline Pretreatment of Rice Straw[J]. Applied Biochemistry and Biotechnology, 2010, 162(6): 1768-1784.

[23] Ji Z, Ma J F, Xu F. Multi-Scale Visualization of Dynamic Changes in Poplar Cell Walls During Alkali Pretreatment[J]. Microscopy and Microanalysis, 2014, 20(2): 566-576.

[24] Ruangmee A, Sangwichien C. Enhance Alkali Pretreatment of Narrow Leaves Cattail by Response Surface Methodology[J] Materials Research and Applications, 2014, 875/877: 1637-1641.

[25] Li J H , Li S Z, Han B, et al. A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol[J]. Biotechnology for Biofuels, 2013, 6: 174.

[26] 王研, 陈咏梅, 万平玉, 等. CaO_MgO复合固体碱催化剂催化降解木质素的研究[J]. 林产化学与工业, 2012, 32(3): 81-86.

[27] 杨秋林. 农业废弃物固体碱预处理过程中木素的结构表征及其脱除机理研究[D]. 广州: 华南理工大学, 2013.

[28] 谢土均, 林鹿, 庞春生, 等. 甘蔗渣活性氧固体碱蒸煮的脱木素动力学[J]. 中国造纸学报, 2012, 27(3): 1-5.

[29] Zheng Y Z, Lin H M, Tao G T. Pretreatment for cellulose hydrolysis by carbon dioxide explosion[J]. Biotechnology Progress, 1998, 14(6): 890-896.

[30] Sun Y, Cheng J Y. Hydrolysis of lignocellulosic materials for ethanol production: a review[J]. Bioresource Technology, 2002, 83(1): 1-11.

[31] Ben’ko E M, Manisova O R, Lunin V V. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars[J]. Russian Journal of Physical Chemistry A, 2013, 87(7): 1108-1113.

[32] Li Z L, Chen C H, Hegg E L, et al. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings[J]. Biotechnology for Biofuels, 2013, 6.

[33] 李燕松, 文新亚, 张志鹏, 等. 酶解木质纤维素的预处理技术研究进展[J]. 酿酒科技, 2006, 146(8): 97-100.

[34] Yesuf J N, Liang Y N. Optimization of sugar release from sweet sorghum bagasse following solvation of cellulose and enzymatic hydrolysis using response surface methodology[J]. Biotechnology Progress, 2014, 30(2): 367-375.

[35] Amiri H, Karimi K , Zilouei H. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production[J]. Bioresource Technology, 2014, 152: 450-456.

[36] Yue J, Yao L, Zhao J, et al. Pretreatment of corncob residues in organic solvent and its effect on enzymatic digestibility[J]. Journal of Chemical Industry and Engineering (China), 2011, 62(11): 3256-3262.

[37] Luterbacher J S, Rand J M, Alonso D M, et al. Nonenzymatic Sugar Production from Biomass Using Biomass-Derived gamma-Valerolactone[J]. Science, 2014, 343(6168): 277-280.

[38] 孙付保, 娄秀平, 杨玉春, 等. 木质纤维素原料的高沸点有机溶剂预处理[J]. 中国酿造, 2011, 237(12): 23-26.

[39] Zhao X B, Wang L, Liu D H. Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis[J]. Journal of Chemical Technology and Biotechnology, 2007, 82(12): 1115-1121.

[40] Kuo C H, Lee C K. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments[J]. Carbohydrate Polymers, 2009, 77(1): 41-46.

[41] Li J H, Wei X Y, Wang Q H, et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization[J]. Carbohydrate Polymers, 2012, 90(4): 1609-1613.

[42] 孙然, 冷云伟, 赵兰, 等. 秸秆原料预处理方法及研究进展[J]. 江苏农业科学, 2010, (6): 453-455.

[43] Negro M J, Manzanares P, Oliva J M, et al. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment[J]. Biomass & Bioenergy, 2003, 25(3): 301-308.

[44] Alizadeh H, Teymouri F, Gilbert T I, et al. Pretreatment of switchgrass by ammonia fiber explosion (AFEX)[J]. Applied Biochemistry and Biotechnology, 2005, 121: 1133-1141.

[45] Kim T H, Lee Y Y. Pretreatment and fractionation of corn stover by ammonia recycle percolation process[J]. Bioresource Technology, 2005, 96(18): 2007-2013.

[46] Qing Q, Yang B, Wyman C E. Impact of surfactants on pretreatment of corn stover[J]. Bioresource Technology, 2010, 101(15): 5941-5951.

[47] Singh D, Zeng J J, Laskar D D, et al. Investigation of wheat straw biodegradation by Phanerochaete chrysosporium[J]. Biomass and Bioenergy, 2011, 35(3): 1030-1040.

[48] Cho M J, Kim Y H, Shin K, et al. Symbiotic adaptation of bacteria in the gut of Reticulitermes speratus: low endo-beta-1,4-glucanase activity[J]. Biochem Biophys Res Commun, 2010, 395(3): 432-435.

[49] Zhi S L, Liu Y L, Yu X Y, et al. Enzymatic Hydrolysis of Cellulose after Pretreated by Ionic Liquids: Focus on One-pot Process[J]. 2011 2nd International Conference on Advances in Energy Engineering (Icaee), 2012, 14: 1741-1747.

[50] Hall M, Bansal P, Lee J H, et al. Biological pretreatment of cellulose: Enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases[J]. Bioresource Technology, 2011, 102(3): 2910-2915.

[51] Malherbe S, Cloete T E. Lignocellulose biodegradation: Fundamentals and applications[J]. Reviews in Environmental Science and Bio/Technology, 2002, 1(2): 105-114.

[52] Khodaverdi M, Jeihanipour A, Karimi A, et al. Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by NMMO[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(3): 429-438.

Outlines

/