Advances in New and Renewable Energy >
Research Progress on Methane Hydrate Formation Kinetics in Porous Media
Received date: 2015-01-21
Revised date: 2015-02-03
Online published: 2015-04-29
Natural gas hydrate is a clean and efficient energy source and it was found abundantly in natural sediment pores under the deep sea. Gas hydrate also can be used as a means of gas storage and separation technology. Therefore, hydrate formation in porous media is the foundations of hydrate exploitation and utilization in industrially. The study of gas hydrate formation kinetics in porous media has a very important significance. The research progress on methane hydrate formation kinetics and characteristics in different porous media were summarized in this paper. In micro pore size porous media, methane hydrate formation research focused on methane gas storage and transportation. Methane hydrate formation properties can be influenced significantly by porous diameter in mecro pore size porous media. Methane hydrate formation and distribution mechanism in sediment pore size were still invisible. Therefore, further studies are necessary to enrich the kinetic theory of methane hydrate formation in porous media. Finally, a number of prospects and ideas for future work were proposed according the previously research achievements.
Key words: methane gas hydrate; porous media; formation
ZANG Xiao-ya , LIANG De-qing , WU Neng-you . Research Progress on Methane Hydrate Formation Kinetics in Porous Media[J]. Advances in New and Renewable Energy, 2015 , 3(2) : 131 -138 . DOI: 10.3969/j.issn.2095-560X.2015.02.008
[1] Lee S Y, Holder G D. Methane hydrates potential as a future energy source[J]. Fuel Processing Technology, 2001, 71: 181-186.
[2] Sloan E D, Koh C A. Clathrate hydrates of natural gases[M]. 3rd ed. Florida: CRC Press, 2007.
[3] Wu N Y, Zhang H Q, Yang S X, et al. Gas Hydrate System of Shenhu Area, Northern South China Sea: Geochemical Results[J]. Journal of Geological Research, 2011, Article ID 370298. doi:10.1155/2011/370298.
[4] 喻西崇, 赵金洲, 邬亚玲. 地层多孔介质中水合物生成条件的预测[J]. 天然气工业, 2002, 22(6): 102-105.
[5] 臧小亚, 梁德青, 吴能友. 细砂沉积物中水合物生成过程研究[J]. 中国科学: 地球科学, 2013, 43(3): 360-367.
[6] 阎立军, 刘犟, 陈光进, 等. 活性炭中甲烷水合物的生成动力学[J]. 石油学报(石油加工), 2002, 18(3): 1-6.
[7] Yousif M H, Sloan E D. Experimental of hydrate formation and dissociation in consolidated porous media[J]. SPE Reservoir Engineering, 1991, 6(4): 452- 458.
[8] Yousif M H, Sloan E D. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Engineering, 1991, 6(1): 69-76.
[9] Cha S B, Ouar H, Wildeman T R, et al. A Third-Surface Effect on Hydrate Formation[J]. The Journal of Physical Chemistry, 1988, 92: 6492-6494.
[10] Sheidegger A E. The physics of flow through porous media[M]. 3rd ed., Toronto Univ. Press, Toronto, 1974.
[11] Muskat M. Physical Principles of Oil Production[M]. McGraw-Hill, New York, 1949.
[12] Miyawaki J, Kanda T, Suzuki T, et al. Macroscopic evidence of enhanced formation of methane nanohydrates in hydrophobic nanospaces[J]. The Journal of Physical Chemistry B, 1998, 102(12): 2187-21921.
[13] 陆现彩, 杨涛, 刘显东, 等. 多孔介质中天然气水合物稳定性的实验研究进展[J]. 现代地质, 2005, 19(1): 89-95.
[14] Iiyama T, Nishikawa K, Otowa T, et al. An ordered water molecular assembly structure in a slit shaped carbon nanospace[J]. The Journal of Physical Chemistry B, 1995, 99(25): 10075-100761.
[15] Iiyama T, Ruike M, Kaneko K. Structural mechanism of water adsorption in hydrophobic micropores from in situ small angle X-ray scattering[J]. Chemical Physics Letters, 2000, 331(5/6): 359-3641.
[16] Zhou L, Sun Y, Zhou Y. Enhancement of the methane storage on activated carbon by preadsorbed water[J]. AIChE Journal, 2002, 48 (10): 2412-2416.
[17] 代淼, 周理, 周亚平. 合成天然气水合物实验研究[J]. 化学进展, 2004, 16(5): 747-750.
[18] Najibi H, Chapoy A, Tohidi B. Methane/natural gas storage and delivered capacity for activated carbons in dry and wet conditions[J]. Fuel, 2008, 87: 7-13.
[19] 臧小亚, 梁德青, 吴能友. 碳纳米管水合物法储甲烷性能研究[J]. 工程热物理学报, 2010, 31(5): 725-728.
[20] Zang X Y, Du J W, Liang D Q, et al. Influence of A-type Zeolite on Methane Hydrate Formation[J]. Chinese Journal of Chemical Engineering, 2009, 17(5): 854-859.
[21] Seshadri K, Wilder J W, Smith D H. Measurement of equilibrium pressures and temperature for propane hydrate in silica gels with different pore size distribution[J]. Journal of Physical Chemistry B, 2001, 105: 2627-2631.
[22] Uchida T, Ebinuma T, Ishizaki T. Dissociation condition measurements of methane hydrate in confined small pores of porous glass[J]. Journal of Physical Chemistry B, 1999, 103: 3659-3662.
[23] Seo Y, Lee H, Uchida T. Methane and Carbon Dioxide Hydrate Phase Behavior in Small Porous Silica Gels: Three- Phase Equilibrium Determination and Thermodynamic Modeling[J]. Langmuir, 2002, 18: 9164-9170.
[24] Handa Y P, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A radius silica gel pores[J]. The Journal of Physical Chemistry, 1992, 96: 8599-86031.
[25] Uchida T, Ebinuma T, Takeya S, et al. Effects of Pore Sizes on Dissociation Temperatures and Pressures of Methane, Carbon Dioxide, and Propane Hydrates in Porous Media[J]. Journal of Physical Chemistry B, 2002, 106: 820-826.
[26] Smith D H, Wilder J W, Seshadri K. Methane hydrate equilibria in silica gels with broad pore-size distributions[J]. AIChE Journal, 2002, 48(2), 393-400.
[27] Deaton W M, Frost E M. Gas hydrates and their relationto the operation of natural-gas pipe lines[M]. U.S. Bureau of Mines. Monograph 8, 1946.
[28] Anderson R, Llamedo M, Tohidi B, et al. Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica[J]. Journal of Physical Chemistry B, 2003, 107(15): 3507-3514.
[29] Anderson R, Tohidi B, Webber J B W. Gas hydrate growth and dissociation in narrow pore networks: capillary inhibition and hysteresis phenomena[J]. Geological Society, London, Special Publications, 2009, 319: 145-159.
[30] Zhou L, Liu X W, Sun Y, et al. Methane sorption in ordered mesoporous silica SBA-15 in the presence of water[J]. Journal of Physical Chemistry B, 2005, 109(48): 22710-22714.
[31] Chakraborty S N, Gelb L D. A Monte Carlo Simulation Study of Methane Clathrate Hydrates Confined in Slit-Shaped Pores[J]. Journal of Physical Chemistry B, 2012, 116(7): 2183-2197.
[32] Kim T W, Kim D H, Song C W, et al. Application of mesoporous silica powders to the kinetic formation of methane gas hydrates[J]. Journal of Ceramic Processing Research, 2011, 12(3): S167-S170.
[33] 张郁, 吴慧杰, 李小森, 等. 多孔介质中甲烷水合物的生成特性的实验研究[J]. 化学学报, 2011, 69(19), 2221-2227.
[34] Aladko E Y, Dyadin Y A, Fenelonov V B, et al. Dissociation conditions of methane hydrate in mesoporous silica gels in wide ranges of pressure and water content[J]. Journal of Physical Chemistry B, 2004, 108: 16540-165471.
[35] Maddena M E, Ulrichb S, Szymcekb P, et al. Experimental formation of massive hydrate deposits from accumulation of CH4 gas bubbles within synthetic and natural sediments[J]. Marine and Petroleum Geology, 2009, 26(3): 369-378.
[36] 陈强, 业渝光, 刘昌岭, 等. 多孔介质体系中甲烷水合物生成动力学的模拟实验[J]. 海洋地质与第四纪地质, 2007, 27(1): 111-116.
[37] Prasad P S R, Chari V D, Sharma D V S G K, et al. Effect of silica particles on the stability of methane hydrates[J]. Fluid Phase Equilibria, 2012, 318: 110-114.
[38] 梁德青, 臧小亚, 吴能友. 介观孔隙中天然气水合物生成过程模拟[J]. 天然气工业, 2013, 33(7): 24-28.
[39] Zang X Y, Liang D Q, Wu N Y. Gas hydrate formation in fine sand[J]. Science China: Earth Sciences, 2013, 56(4): 549-556.
[40] Chen D F, Cathles L M. A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam: Application to the Bush Hill vent site, Green Canyon Block 185, Gulf of Mexico[J]. Journal of Geophysical Research, 2003, 108(B1): 2058.
[41] Melnikov V. Modelling of gas hydrate formation in porous media[C]. Proceedings of the 8th International Conference on Gas Hydrates: Toulouse, France, 1996.
[42] Xu W Y, Ruppel C. Prediction the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research, 1999, 104(B3): 5081-5095.
[43] Clennell M B, Judd A, Hovland M. Movement and accumulation of methane in marine sediments: relation to gas hydrate systems[M]//Edited by Max M D. Natural gas hydrate in oceanic and permafrost environments. Rotterdam, Netherlands: Kluwer Academic Publishers, 2000. 105-122.
[44] Milkov A V, Dickens G R, Claypool G E. Co-existence
of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core[J]. Earth and Planetary Science Letters, 2004, 222: 829-843.
[45] Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213: 169-183.
[46] Clarke M A, Pooladi-Darvish M, Bishnoi P R. A method to predict equilibrium conditions of gas hydrate formation in porous media[J]. Industrial & Engineering Chemistry Research, 1999, (38): 2485.
[47] Clarke M A, Bishnoi P R. Determination of the intrinsic kinetics of CO2 gas hydrate formation using in situ particle size analysis[J]. Chemical Engineering Science, 2005, 60(3): 695-709.
[48] Zatsepina O Y, Buffett B A. Phase equilibrium of gas hydrate: Implications for the formation of hydrate in the deep sea floor[J]. Geophysical Research Letters, 1997, 24(13): 1567-1570.
[49] Buffett B A, Zatsepina O Y. Formation of gas hydrate from dissolved gas in natural porous media[J]. Marine Geology, 2000, 164(1/2): 69-77.
[50] Zatsepina O Y, Buffett B A. Nucleation of gas hydrate in marine environments[J]. Geophysical Research Letters, 2003, 30(9): 1451.
[51] Tohidi B, Anderson R, Clennell M B, et al. Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels[J]. Geology, 2001, 29(9): 867-870.
[52] Chuvilin E M, Makhonina N A, Titenskaya O A. Petrophysical investigations of frozen sediments artificially saturated by hydrate[C]. Proceedings of the 4th International Conference on Gas Hydrates, May19-23, Yokohama, Japan, 2002.
[53] Chuvilin E M, Ebinuma T, Kamata Y, et al. Effects of temperature cycling on the phase transition of water in gas-saturated sediments[J]. Canadian Journal of Physics, 2003, 81(1/2): 343-350.
[54] Waite W F, Winters W J, Mason D H. Methane hydrate formation in partially water-saturated Ottawa sand[J]. American Mineralogist, 2004, 89: 1202-1207.
[55] Spangenberg E, Kulenkampff J, Naumann R, et al. Pore space hydrate formation in a glass bead sample from methane dissolved in water[J]. Geo-physical Research Letters, 2005, 32(24): L24301.
[56] Kneafsey T J, Tomutsa L, Moridis G J, et al. Methane hydrate formation and dissociation in a partially saturated core-scale sand sample[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/3): 108-126.
[57] Sun R, Duan Z H. An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments[J]. Chemical Geology, 2007, 244(1/2): 248-262.
[58] Linga P, Haligva C, Nam S C, et al. Gas Hydrate Formation in a Variable Volume Bed of Silica Sand Particles[J]. Energy Fuels, 2009, 23(11): 5496-5507.
/
〈 |
|
〉 |