Welcome to visit Advances in New and Renewable Energy!

Influence of Al2O3 Buffer Layer on Interface Charge Recombination in CdSe Quantum Dot-sensitized Solar Cells

  • LIANG Zhu-rong ,
  • BI Zhuo-neng ,
  • JIN Hu ,
  • MEI Feng-jiao ,
  • XU Xue-qing
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-06-29

  Revised date: 2015-07-16

  Online published: 2015-08-30

Abstract

Quantum dot-sensitized solar cells (QDSSCs) have attracted great interest owing to their low fabrication cost. However, the power conversion efficiency (PCE) is relatively low because of the high density of surface states in quantum dots (QDs), and severe surface and interface electron recombination. In this work, we utilized Al2O3 as the modification layer at the TiO2/CdSe QDs interface, and adopted the electrochemical impedance spectroscopy (EIS) and open-circuit voltage decay measurement to investigate the effect of Al2O3 on the inhibition of the interfacial electron recombination. The results revealed that the modification layer increased the conduction band edge of TiO2 and reduced the TiO2/QDs interface defects, which retarded the interface electron recombination and therefore significantly improved the short-circuit current, open-circuit voltage, fill factor and hence the power conversion efficiency of the devices.

Cite this article

LIANG Zhu-rong , BI Zhuo-neng , JIN Hu , MEI Feng-jiao , XU Xue-qing . Influence of Al2O3 Buffer Layer on Interface Charge Recombination in CdSe Quantum Dot-sensitized Solar Cells[J]. Advances in New and Renewable Energy, 2015 , 3(4) : 245 -250 . DOI: 10.3969/j.issn.2095-560X.2015.04.001

References

[1] O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353: 737-740.

[2] Bisquert J. Physical electrochemistry of nanostructured devices[J]. Physical Chemistry Chemical Physics, 2008, 10(1): 49-72.

[3] Cao Y, Bai Y, Yu Q, et al. Dye sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(Hexylthio)thiophene conjugated bipyridine[J]. Journal of Physical Chemistry C, 2009, 113(15): 6290-6297.

[4] 徐雪青, 徐刚. CdSe 量子点敏化纳米二氧化钛太阳电池的电化学交流阻抗谱[J]. 中国科学(化学), 2011, 41(1): 37-43.

[5] Nozik A J. Quantum dot solar cells[J]. Physica E, 2002, 14: 115-120.

[6] Yu W, Qu L H, Guo W Z, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals[J]. Chemistry of Materials, 2003, 15(14): 2854-2860.

[7] Kamat P V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters[J]. Journal of Physical Chemistry C, 2008, 112(48): 18737-18753.

[8] Klimov V I. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals:  implications for lasing and solar energy conversion[J]. Journal of Physical Chemistry B, 2006, 110(34): 16827-16845.

[9] Xu X Q, Wan Q C, Luan C Y, et al. Fabrication of CuInS2-sensitized solar cells via an improved SILAR process and its interface electron recombination[J]. ACS Applied Materials and Interfaces, 2013, 5(21): 10605-10613.

[10] Li J Z, Kong F T, Wu G H, et al. TiO2/dye/electrolyte interface modification for dye-sensitized solar cells[J]. Acta Phys. -Chim. Sin, 2013, 29(9): 1851-1864.

[11] Xu X Q, Barea E M, Fabregat-Santiago F, et al. Influence of alumina coating on transport and recombination in DSSCs with 1-methylbenzidazole as electrolyte additives[C]//2009 Photonics and Optoelectronics Meetings (POEM), Wuhan, China, 08 August, 2009: Vol. 7518, 75180J.

[12] Barea E M, Xu X Q, González-Pedro V, et al. Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells[J]. Energy & Environmental Science, 2011, 4(9): 3414-3419.

[13] Li W X, Hu L H, Dai S Y. Core-shell structure of Y2O3/TiO2 for use in dye sensitized solar cells[J]. Acta Phys. -Chim. Sin. 2011, 27(10): 2367-2372.

[14] González-Pedro V, Xu X Q, Mora-Seró I, et al. Modeling high-efficiency quantum dot sensitized solar cells[J]. ACS Nano, 2010, 4(10): 5783-5790.

[15] Bisquert J. Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells[J]. Physical Chemistry Chemical Physics, 2003, 5(24): 5360-5364.

[16] Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, et al. Impedance spectroscopy study of the influence of electrolyte conditions in parameters of transport and recombination in dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells, 2005, 87: 117-131.

[17] Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F. Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution[J]. Journal of Physical Chemistry B, 2000, 104(10): 2287-2298.

[18] Bisquert J. Theory of the impedance of electron diffusion and recombination in a thin layer[J]. Journal of Physical Chemistry B, 2002, 106(2): 325-333.

[19] Fabregat-Santiago F, Bisquert J, Cevey L, et al. Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor[J]. Journal of the American Chemical Society, 2009, 131(2): 558-562.

[20] Fabregat-Santiago F, Garcia-Canadas J, Palomares E, et al. The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings[J]. Joutnal of Applied Physics, 2004, 96(12): 6903-6907.

[21] Wang Q, Ito S, Grätzel M, et al. Characteristics of high efficiency dye-sensitized solar cells[J]. Journal of Physical Chemistry B, 2006, 110(50): 25210-25221.

[22] Bisquert J, Vikhrenko V S. Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells[J]. Journal of Physical Chemistry B, 2004, 108(7): 2313-2322.

Outlines

/