[1] Fang H, Wang J, Yu R, et al. Sulfur management of NOx adsorber technology for diesel light-duty vehicle and truck applications[J]. SAE Technical Papers, 2003, 01: 3245.
[2] Kim D H. Sulfation and desulfation mechanisms on Pt-BaO/Al2O3 NOx storage-reduction (NSR) catalysts[J]. Catalysis Surveys from Asia, 2014, 18(1): 13-23.
[3] Ottinger N A, Toops T J, Pihl J A, et al. Sulfate storage and stability on representative commercial lean NOx trap components[J]. Applied Catalysis B:Environmental, 2012, 117: 167-176.
[4] Wang Q, Zhu J H, Wei S Y, et al. Sulfur poisoning and regeneration of NOx storage-reduction Cu/K2Ti2O5 catalyst[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7330-7335.
[5] Olsson L, Fredriksson M, Blint R J. Kinetic modeling of sulfur poisoning and regeneration of lean NOx traps[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 31-41.
[6] Choi J S, Partridge W P, Pihl J A, et al. Sulfur and temperature effects on the spatial distribution of reactions inside a lean NOx trap and resulting changes in global performance[J]. Catalysis Today, 2008, 136(1/2): 173-182.
[7] Limousy L, Mahzoul H, Brilhac J F, et al. SO2 sorption on fresh and aged SOx traps[J]. Applied Catalysis B: Environmental, 2003, 42(3): 237-249.
[8] Happel M, Kylhammar L, Carlsson P A, et al. SOx storage and release kinetics for ceria-supported platinum[J]. Applied Catalysis B: Environmental, 2009, 91(3/4): 679-682.
[9] Centi G, Perathoner S. Dynamics of SO2 adsorption–oxidation in SOx traps for the protection of NOx adsorbers in diesel engine emissions[J]. Catalysis Today, 2006, 112(1/4): 174-179.
[10] Limousy L, Mahzoul H, Brilhac J F, et al. A study of the regeneration of fresh and aged SOx adsorbers under reducing conditions[J]. Applied Catalysis B: Environmental, 2003, 45(3): 169-179.
[11] Nakatsuji T, Yasukawa R, Tabata K, et al. Highly durable NOx reduction system and catalysts for NOx storage reduction system[J]. SAE Technical Paper 980932, 1998, doi:10.4271/980932.
[12] Li L, King D L. Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 238-244.
[13] Chansai S, Burch R, Hardacre C. Controlling the sulfur poisoning of Ag/Al2O3 catalysts for the hydrocarbon SCR reaction by using a regenerable SOx trap[J]. Topics in Catalysis, 2013, 56(1/8): 243-248.
[14] Nakatsuji T, Yasukawa R, Tabata K, et al. Catalytic reduction system of NOx in exhaust gases from diesel engines with secondary fuel injection[J]. Applied Catalysis B: Environmental, 1998, 17(4): 333-345.
[15] Meunier F C, Ross J R H. Effect of ex situ treatments with SO2 on the activity of a low loading silver-alumina catalyst for the selective reduction of NO and NO2 by propene[J]. Applied Catalysis B: Environmental, 2000, 24(1): 23-32.
[16] Nakatsuji T, Yasukawa R, Tabata K, et al. A highly durable catalytic NOx reduction in the presence of SOx using periodic two steps, an operation in oxidizing conditions and a relatively short operation in reducing conditions[J]. Applied Catalysis B: Environmental, 1999, 21(2): 121-131.
[17] Yoshida K, Asanuma T, Nishioka H, et al. Development of NOx reduction system for diesel aftertreatment with sulfur trap catalyst[J]. SAE Technical Paper, 2007, 01: 0237.
[18] Nishioka H, Asanuma T, Fukuma T. Development of clean diesel NOx after-treatment system with sulfur trap catalyst[J]. SAE International Journal of Fuels and Lubricants, 2010, 3(1): 30-36.
[19] Milne C R, Silcox G D, Pershing D W, et al. High-temperature, short-time sulfation of calcium-based sorbents. 1. Theoretical sulfation model[J]. Industrial & Engineering Chemistry Research, 1990, 29(11): 2192-2201.
[20] Borgward R h, Harvey R D. Properties of carbonate rocks related to SO2 reactivity[J]. Environmental Science & Technology, 1972, 6(4): 350-360.
[21] Li L, Chen Z M, Zhang Y H, et al. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate[J]. Atmospheric Chemistry and Physics, 2006, 6: 2453-2464.
[22] Osaka Y, Kurahara S, Kobayashi N, et al. Study on SO2-absorption behavior of composite materials for DeSO(x) filter from diesel exhaust[J]. Heat Transfer Engineering, 2015, 36(3): 325-332.
[23] 冯亚娜, 赵毅. 金属氧化物在脱硫脱氮技术中的应用[J]. 工业安全与环保, 2003, 29: 3-6.
[24] Kylhammar L, Carlsson P A, Ingelsten H H, et al. Regenerable ceria-based SOx traps for sulfur removal in lean exhausts[J]. Applied Catalysis B: Environmental, 2008, 84(1/2): 268-276.
[25] Waqif M, Pieplu A, Saur O, et al. Use of CeO2-Al2O3 as a SO2 sorbent[J]. Solid State Ionics, 1997, 95(1/2): 163-167.
[26] Waqif M, Bazin P, Saur O, et al. Study of ceria sulfation[J]. Applied Catalysis B: Environmental, 1997, 11(2): 193-205.
[27] Saur O, Bensitel M, Saad A B M, et al. The structure and stability of sulfated alumina and titania[J]. Journal of Catalysis, 1986, 99(1): 104-110.
[28] Bensitel M, Saur O, Lavalley J C, et al. An infrared study of sulfated zirconia[J]. Materials Chemistry and Physics, 1988, 19(1/2): 147-156.
[29] Bensitel M, Waqif M, Saur O, et al. The structure of sulfate species on magnesium oxide[J]. The Journal of Physical Chemistry, 1989, 93(18): 6581-6582.
[30] Waqif M, Saur O, Lavalley J C, et al. Evaluation of magnesium aluminate spinel as a sulfur dioxide transfer catalyst[J]. Applied Catalysis, 1991, 71(2): 319-331.
[31] Li L Y, King D L. High-capacity sulfur dioxide absorbents for diesel emissions control[J]. Industrial & Engineering Chemistry Research, 2005, 44(1): 168-177.
[32] Li L, King D L. Cryptomelane as high-capacity sulfur dioxide absorbent for diesel emission control: A stability study[J]. Industrial & Engineering Chemistry Research, 2005, 44(19): 7388-7397.
[33] Li L, King D L. Synthesis and characterization of silver hollandite and its application in emission control[J]. Chemistry of Materials, 2005, 17(17): 4335-4343.
[34] Jiang R, Shan H, Li C, et al. Preparation and characterization of Mn/MgAlFe as transfer catalyst for SOx abatement[J]. Journal of Natural Gas Chemistry, 2011, 20(2): 191-197.
[35] Kang H T, Zhang C Y, Lv K, et al. Surfactant-assisted synthesis and catalytic activity for SOx abatement of high-surface-area CuMgAlCe mixed oxides[J]. Ceramics International, 2014, 40(4): 5357-5363.
[36] Yu H Q, Wu Y B, Song T B, et al. Preparation of metal oxide doped ACNFs and their adsorption performance for low concentration SO2[J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(11): 1102-1106.
[37] Osaka Y, Tsujiguchi T, Kodama A, et al. Study on the optimized design of DeSOx filter operating at low temperature in diesel exhaust[J]. Journal of Chemical Engineering of Japan, 2014, 47(7): 555-560.