Advances in New and Renewable Energy >
Numerical Simulation Study of the Parameters Effect on Temperature Distribution and Mining Life during EGS Exploitation, Yangyi of Tibet
Received date: 2015-06-15
Revised date: 2015-08-12
Online published: 2015-10-30
There is a rich geothermal energy in Yangyi area of Tibet and the potential energy of single well can be up to 10 MW. Utilization of Enhanced Geothermal System (EGS) technology in the exploitation of deep geothermal energy can alleviate the western energy shortage problem. An idealized 2D EGS numerical model was built to discuss the influence of production flow, injection-production pattern, injection temperature and other parameters on reservoir temperature distribution and mining life during the process of deep geothermal exploitation. 12 cases were designed based on the temperature information of Yangyi and the conclusions are as follows: production flow has a great influence on EGS exploitation, maximum production flow should be controlled below 0.028 kg/s to ensure commercial exploitation value for 50 years; considering the drilling cost, it is better to take high-injection-high-production and middle-injection-high-production pattern; the influence of injection temperature on the reservoir is small, any tail water between 40oC ~ 80oC can be reinjection into EGS reservoir to achieve the utilization of geothermal gradient.
Key words: EGS; geothermal reservoir; temperature distribution; mining life; flow rate
LING Lu-lu , SU Zheng , ZHAI Hai-zhen , WU Neng-you . Numerical Simulation Study of the Parameters Effect on Temperature Distribution and Mining Life during EGS Exploitation, Yangyi of Tibet[J]. Advances in New and Renewable Energy, 2015 , 3(5) : 367 -374 . DOI: 10.3969/j.issn.2095-560X.2015.05.008
[1] 凌璐璐, 苏正, 吴能友. 增强型地热系统开采过程中热储渗透率对温度场的影响[J]. 可再生能源, 2015, 33(1): 82-90.
[2] 梁廷立. 羊易地热田勘探工作方法的初步研究[C]// 中国西藏高温地热开发利用国际研讨会论文选. 北京: 地质出版社, 1993: 154-159.
[3] 卢润, 安玉仙, 梁廷立. 西藏羊易地热田开发方案论述[C]//中国西藏高温地热开发利用国际研讨会论文选. 北京: 地质出版社, 1993: 105-114.
[4] 朱梅湘, 徐勇. 羊易地热田的水热蚀变及其热田演化[C]//中国西藏高温地热开发利用国际研讨会论文选. 北京: 地质出版社, 1993: 125-133.
[5] 夏抱本, 张家诚. 西藏地热活动规律初探[C]//中国西藏高温地热开发利用国际研讨会论文选. 北京: 地质出版社, 1993: 1-7.
[6] 苏正, 王晓星, 胡剑, 等. 我国增强型地热系统选址问题探讨[J]. 地球物理学进展, 2014, 29(1): 0386-0391.
[7] 多吉, 曾毅, 焦兴义, 等. 西藏地热发电的回顾与思考[C]//中国地热资源开发与保护——全国地热资源开发利用与保护考察研讨会论文集. 北京: 地质出版社, 2007: 36-39.
[8] 王绍亭, 陈新民. 西藏地热资源及地热发电的现状与发展[J]. 中国电力, 1999, 32(10): 79-81.
[9] 王晓星, 吴能友, 张可霓, 等. 增强型地热系统开发过程中的多场耦合问题[J]. 水文地质工程地质, 2012, 39(2): 126-130.
[10] 赵阳升, 万志军, 康建荣. 高温岩体地热开发导论[M]. 北京: 科学出版社, 2004.
[11] 汪集旸. 李四光教授倡导的中国地热研究[J]. 第四纪研究, 1989, (3): 279-285.
[12] 郭剑, 陈继良, 曹文炅, 等. 增强型地热系统研究综 述[J]. 电力建设, 2014, 35(4): 10-24.
[13] VECCHIARELLI A, SOUSA R, EINSTEIN H H. Parametric study with geofrac[C]//a three-dimensional stochastic fracture flow model: Thirty-eighth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2013.
[14] SIFFERT D, HAFFEN S, GARCIA M H, et al. Phenomenological study of temperature gradient anomalies in the buntsandstein formation, above the Soultz geothermal reservoir, using TOUGH2 simulaitons[C]//Thirty-eighth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2013.
[15] ZENG Y C, WU N Y, SU Z, et al. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field[J]. Energy, 2013, 63: 268-282.
[16] ZENG Y C, WU N Y, SU Z, et al. Numerical simulation of electricity generation potential from fractured granite reservoir through a single horizontal well at Yangbajing geothermal field[J]. Energy, 2014, 65: 472-487.
[17] ZENG Y C, SU Z, WU N Y. Numerical Simulation of Heat Production Potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field[J]. Energy, 2013, 56: 92-107.
[18] 胡剑, 苏正, 吴能友, 等. 增强型地热系统热流耦合水岩温度场分析[J]. 地球物理进展, 2014, 29(3): 1391-1398.
[19] 翟海珍, 苏正, 吴能友. 苏尔士增强型地热系统的开发经验及对我国地热开发的启示[J]. 新能源进展, 2014, 2(4): 286-294.
[20] 蒋林, 季建清, 徐芹芹. 渤海湾盆地应用增强型地热系统的地质分析[J]. 地质与勘探, 2013, 49(1): 167-178.
[21] 张亮, 裴晶晶, 任韶然. 超临界CO2在干热岩中的采热能力及系统能量利用效率研究[J]. 可再生能源, 2014, 3(1): 114-119.
[22] 雷宏武, 金光荣, 李佳琦, 等. 松辽盆地增强型地热系统地热能开发热-水动力耦合过程[J]. 吉林大学学报, 2014, 44(5): 1633-1646.
[23] 那金, 冯波, 兰乘宇, 等. CO2化学刺激剂对增强地热系统热储层的改造作用[J]. 中南大学学报, 2014, 45(7): 2447-2458.
[24] DEO M, ROEHNER R, ALLLIS R, et al. Reservoir modeling of geothermal energy production from stratigraphic reservoirs in the Great Basin[C]//Thirty-eighth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2013.
[25] CHEN J L, LUO L, JIANG F M. Analyzing heat extraction and sustainability of enhanced geothermal systems(EGS) with a novel single-porosity model: Thirty-eighth Workshop on Geothermal Reservoir Engineering[C]. Stanford: Stanford University, 2013.
[26] HOFMANN H, WEIDES S, BABADAGLI T, et al. Integrated reservoir modeling for enhanced geothermal energy systems in central Alberta, Canada[C]//Thirty-eighth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2013.
[27] 于进洋. 西藏羊易高温水热型地热井筒温度场[D]. 北京: 中国地质大学, 2013.
[28] 秦进生. 西藏羊易地热田的水热蚀变及地热地质意义[J]. 太原理工大学学报, 2003, 34(2): 161-165.
[29] TELLIER N A, DUCHANE D V. 干热岩——一个高温地热概念: 中国西藏高温地热开发利用国际研讨会论文选[C]. 北京: 地质出版社, 1993: 173-178.
[30] PRUESS K, OLDENBURG C, MORIDIS G. TOUGH2 user’s guide (Version 2.0)[R]. Berkeley: Lawrence Berkeley National Laboratory, 1999.
[31] XIONG Y, HU L T, WU Y S. Coupled geomechanical and reactive geochemical simulations for fluid and heat flow in enhanced geothermal reservoirs[C]//Thirty-eighth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2013.
[32] PELUCHETTE J, ANDERSON B J. Optimization of integrated reservoir, wellbore, and power plant models for enhanced geothermal systems[C]//Thirty-eighth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2013.
[33] ZHANG K N, WU Y S, PRUESS K. User’s guide for TOUGH2-MP——a massively parallel version of the TOUGH2 code[R]. Berkeley: Lawrence Berkeley National Laboratory, 2008.
[34] The future of geothermal energy: Impact of Enhanced Geothermal Systems on the United States in the 21st Century[R]. Massachusetts Institute of Technology, 2006.
/
〈 |
|
〉 |