Welcome to visit Advances in New and Renewable Energy!

Research Progress of Molybdenum Disulfide Nano Materials Used for Chemical Power Source

Expand
  • 1. Low Carbon Energy Institute, China University of Mining & Technology, Jiangsu Xuzhou 221008, China;
    2. School of Materials Science and Engineering, China University of Mining & Technology, Jiangsu Xuzhou 221116, China

Received date: 2015-07-03

  Revised date: 2015-09-29

  Online published: 2015-10-30

Abstract

Due to its good charge storage in electric double layer and rapid interlayer carrier transport, molybdenum disulfide (MoS2) with typically “sandwich-like” two-dimensional layered structure is a kind of ideal electrode materials for chemical power sources. In this paper, the structure and performance characteristics of MoS2 materials were briefly introduced. Research progresses of MoS2 materials used in chemical power sources were reviewed in recent five years. The main problems and challenges of MoS2 nanomaterials were analyzed. The solutions were emphatically discussed, especially the modulation of morphology and size. Finally, the development direction and application prospects of MoS2 nanomaterials in the future were summarized.

Cite this article

HUANG Fei1,2, ZHAO Hui2, FENG Hao2, LIAO Zhen-hua2, RAN Meng2, LI Xue-jun2, QI Min2, YAN Ai-hua1,2 . Research Progress of Molybdenum Disulfide Nano Materials Used for Chemical Power Source[J]. Advances in New and Renewable Energy, 2015 , 3(5) : 375 -383 . DOI: 10.3969/j.issn.2095-560X.2015.05.009

References

[1] HAN S W, KWON H, KIM S K, et al. Band-gap transition induced by interlayer van der Waals interaction in MoS2[J]. Phys. Rev. B, 2011, 84(4): 045409.

[2] DAVID L, BHANDAVAT R, BARRERA U, et al. Polymer-derived ceramic functionalized MoS2 composite paper as a stable lithium-ion battery electrode[J]. Sci. Rep., 2015, 5: 9792.

[3] PARK S K, YU S H, WOO S, et al. A simple L-cysteine assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries[J]. Dalton T., 2013, 42(7): 2399-2405.

[4] WANG M, LI G, XU H, et al. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets[J]. ACS Appl. Mater. Inter., 2013, 5(3): 1003-1008.

[5] XU B, WANG L, CHEN H J, et al. Adsorption and diffusion of lithium on 1T-MoS2 monolayer[J]. Comp. Mater. Sci., 2014, 93: 86-90.

[6] PARK S K, YU S H, WOO S, et al. A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties[J]. CrystEngComm, 2012, 14(24): 8323-8325.

[7] STEPHENSON T, LI Z, OLSEN B, et al. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites[J]. Energ. Environ. Sci., 2013, 7(1): 209-231.

[8] BALENDHRAN S, OU J Z, BHASKARAN M, et al. Atomically thin layers of MoS2 via a two step thermal evaporation- exfoliation method[J]. Nanoscale, 2012, 4(2): 461-466.

[9] LUQUE A, MARTÍ A, STANLEY C. Understanding intermediate-band solar cells[J]. Nat. Photonics, 2012, 6: 146-152.

[10] CHEIWCHANCHAMNANGIJ T, LAMBRECHT W R L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2[J]. Phys. Rev. B, 2012, 85: 205302.

[11] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nat. Nanotechnol., 2011, 6(3): 147-150.

[12] WANG X, ZHANG Z, CHEN Y, et al. Morphology- controlled synthesis of MoS2 nanostructures with different lithium storage properties[J]. J. Alloys Compd., 2014, 600: 84-90.

[13] XU X, LIU W, KIM Y, et al. Nanostructured transition metal sul?des for lithium ion batteries: Progress and challenges[J]. Nano Today, 2014, 9: 604-630.

[14] LIU Y, REN L, QI X, et al. Hydrothermal exfoliated molybdenum disulfide nanosheets as anode material for lithium ion batteries[J]. J. Energ. Chem., 2014, 23: 207-212.

[15] HWANG H, KIM H, CHO J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Lett., 2011, 11(11): 4826-4830.

[16] SEN U K, MITRA S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder[J]. ACS Appl. Mater. Inter., 2013, 5(4): 1240-1247.

[17] YANG T, CHEN Y, QU B, et al. Construction of 3D flower-like MoS2 spheres with nanosheets as anode materials for high-performance lithium ion batteries[J]. Electrochim. Acta, 2014, 115: 165-169.

[18] LI Y, WU D, ZHOU Z, et al. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: A computational study[J]. J. Phys. Chem. Lett., 2012, 3: 2221-2227.

[19] SUN P L, ZHANG W X, HU X L, et al. Synthesis of hierarchical MoS2 and its electrochemical performance as anode material for lithium-ion batteries[J]. J. Mater. Chem. A, 2014, 2: 3498-3504.

[20] ZHANG C, WU H B, GUO Z, et al. Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties[J]. Electrochem. Commun., 2012, 20: 7-10.

[21] DAS S K, MALLAVAJULA R, JAYAPRAKASH N, et al. Self-assembled MoS2-carbon nanostructures: Influence of nanostructuring and carbon on lithium battery performance[J]. J. Mater. Chem., 2012, 22(26): 12988-12992.

[22] ZHANG C, WANG Z, GUO Z, et al. Synthesis of MoS2-C one dimensional nanostructures with improved lithium storage properties[J]. ACS Appl. Mater. Inter., 2012, 4(7): 3765-3768.

[23] QIU W, XIA J, HE S, et al. Facile synthesis of hollow MoS2 microspheres/amorphous carbon composites and their lithium storage properties[J]. Electrochim. Acta, 2014, 117: 145-152.

[24] ZHOU X, WAN L J, GUO Y G. Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries[J]. Nanoscale, 2012, 4(19): 5868-5871.

[25] JIANG H, REN D, WANG H, et al. 2D monolayer MoS2–carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage[J]. Adv. Mater., 2015, 27: 3687-3695.

[26] CHANG K, CHEN W. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5(6): 4720-4728.

[27] GUO J, CHEN X, JIN S, et al. Synthesis of graphene-like MoS2 nanowall/graphene nanosheet hybrid materials with high lithium storage performance[J]. Catal. Today, 2015, 246: 165-171.

[28] YANG M H, KO S, IM J S, et al. Free-standing molybdenum disulfide/graphene composite paper as a binder- and carbon-free anode for lithium-ion batteries[J]. J. Power Sources, 2015, 288: 76-81.

[29] ZHAO Y, KUAI L, LIU Y, et al. Well-constructed single-layer molybdenum disulfide nanorose cross-linked by three dimensional-reduced graphene oxide network for superior water splitting and lithium storage property[J]. Sci. Rep., 2014, 5: 8722.

[30] MA L, HUANG G, CHEN W, et al. Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: Micro- structure and electrochemical lithium storage[J]. J. Power Sources, 2014, 264: 262-271.

[31] MA L, YE J, CHEN W, et al. Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance[J]. Nano Energy, 2014, 10: 144-152.

[32] JING Y, ORTIZ-QUILES E O, CABRERA C R, et al. Layer-by-layer hybrids of MoS2 and reduced graphene oxide for lithium ion batteries[J]. Electrochim. Acta, 2014, 147: 392-400.

[33] SHI Y, WANG Y, WONG J I, et al. Self-assembly of hierarchical MoSx/CNT nanocomposites (2<x<3): Towards high performance anode materials for lithium ion batteries[J]. Sci. Rep., 2013, 3: 2169.

[34] BINDUMADHAVAN K, SRIVASTAVA S K, MAHANTY S. MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries[J]. Chem. Commun., 2013, 49(18): 1823-1825.

[35] DAS S K. Coaxial growth of carbon coated MoS2 nanoparticles on carbon nanotube and their electrochemical evaluation[J]. Mater. Lett., 2014, 130: 240-244.

[36] ZHOU F, XIN S, LIANG H W, et al. Carbon nanofibers decorated with molybdenum disulfide nanosheets: Synergistic lithium storage and enhanced electrochemical performance[J]. Angew. Chem., 2014, 126: 11736-11740.

[37] YANG L, WANG S, MAO J, et al. Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries[J]. Adv. Mater., 2013, 25(8): 1180-1184.

[38] LIU H, ZHANG F, LI W, et al. Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes[J]. Electrochim. Acta, 2015, 167: 132-138.

[39] WANG J, WU Z, HU K, et al. High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor[J]. J. Alloys Compd., 2015, 619: 38-43.

[40] ZHAO X, MAI Y, LUO H, et al. Nano-MoS2/poly (3,4-ethylenedioxythiophene): Poly(styrenesulfonate) composite prepared by a facial dip-coating process for Li-ion battery anode[J]. Appl. Surf. Sci., 2014, 288: 736-741.

[41] WANG J, CHAO D, LIU J, et al. Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage[J]. Nano Energy, 2014, 7: 151-160.

[42] ZHUANG W, LI L, ZHU J, et al. Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes[J]. ChemElectroChem, 2015, 2: 374-381.

[43] HAN S, ZHAO Y, TANG Y, et al. Ternary MoS2/SiO2/ graphene hybrids for high-performance lithium storage[J]. Carbon, 2015, 81: 203-209.

[44] LINGAPPAN N, VAN N H, LEE S, et al. Growth of three dimensional flower-like molybdenum disulfide hierarchical structures on graphene/carbon nanotube network: An advanced heterostructure for energy storage devices[J]. J. Power Sources, 2015, 280: 39-46.

[45] HOU Y, LI J, WEN Z, et al. N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries[J]. Nano Energy, 2014, 8: 157-164.

[46] WANG L, XU Z, WANG W, et al. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets[J]. J. Am. Chem. Soc., 2014, 136(18): 6693-6697.

[47] FANG X, HUA C, GUO X, et al. Lithium storage in commercial MoS2 in different potential ranges[J]. Electrochim. Acta, 2012, 81: 155-160.

[48] ENYASHIN A N, SEIFERT G. Density-functional study of LixMoS2 intercalates (0 ≤ x ≤ 1)[J]. Comput. Theor. Chem., 2012, 999: 13-20.

[49] ENYASHIN A N, YADGAROV L, HOUBEN L, et al. New route for stabilization of 1T-WS2 and MoS2 phases[J]. J. Phys. Chem. C, 2011, 115: 24586-24591.

[50] LIN F, NORDLUND D, WENG T C, et al. Phase evolution for conversion reaction electrodes in lithium- ion batteries[J]. Nat. Commun., 2014, 5: 3358-3366.

[51] WANG L, XU Z, WANG W, et al. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets[J]. J. Am. Chem. Soc., 2014, 136: 6693-6697.

[52] LIN Y C, DUMCENCO D O, HUANG Y S, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2[J]. Nat. Nanotechnol., 2014, 9: 391-396.

[53] YANG Z, REN J, ZHANG Z, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chem. Rev., 2015, 115(11): 5159-5223.

[54] WANG G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2012, 41: 797-828.

[55] PENG X, PENG L, WU C, et al. Two dimensional nanomaterials for flexible supercapacitors[J]. Chem. Soc. Rev., 2014, 43: 3303-3323.

[56] ILANCHEZHIYAN P, KUMAR G M, KANG T W. Electrochemical studies of spherically clustered MoS2 nanostructures for electrode applications[J]. J. Alloys Compd., 2015, 634: 104-108.

[57] MA L, XU L M, ZHOU X P, et al. Biopolymer-assisted hydrothermal synthesis of flower-like MoS2 microspheres and their supercapacitive properties[J]. Mater. Lett., 2014, 132: 291-294.

[58] HUANG K J, ZHANG J Z, SHI G W, et al. Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material[J]. Electrochim. Acta, 2014, 132: 397-403.

[59] HUANG K J, WANG L, ZHANG J Z, et al. One-step preparation of layered molybdenum disul?de/multi-walled carbon nanotube composites for enhanced performance supercapacitor[J]. Energy, 2014, 67: 234-240.

[60] FIRMIANO E G D S, RABELO A C, DALMASCHIO C J, et al. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide[J]. Adv. Energ. Mater., 2014, 4: 1301380.

[61] ISLAM M S, FISHER C A J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties[J]. Chem. Soc. Rev., 2014, 43: 185-204.

[62] MORTAZAVI M, WANG C, DENG J, et al. Ab initio characterization of layered MoS2 as anode for sodium-ion batteries[J]. J. Power Sources, 2014, 268: 279-286.

[63] QIN W, CHEN T, PAN L, et al. MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance[J]. Electrochim. Acta, 2015, 153: 55-61.

[64] WANG J, LUO C, GAO T, et al. An advanced MoS2/carbon anode for high-performance sodium-ion batteries[J]. Small, 2015, 11: 473-481.

[65] WANG X, LI Y, GUAN Z, et al. Micro-MoS2 with excellent reversible sodium-ion storage[J]. Chem. Eur. J., 2015, 21: 6465-6468.

[66] XIE X, AO Z, SU D, et al. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface[J]. Adv. Funct. Mater., 2015, 25: 1393-1403.

[67] WANG Y X, CHOU S L, WEXLER D, et al. High- performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/graphene composites[J]. Chem. Eur. J., 2014, 20: 9607-9612.

[68] HU Z, WANG L, ZHANG K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries[J]. Angew. Chem., 2014, 126: 13008-13012.

[69] ZHANG D A, WANG Q, WANG Q, et al. High capacity and cyclability of hierarchical MoS2/SnO2 nanocomposites as the cathode of lithium-sulfur battery[J]. Electrochim. Acta, 2015, 173: 476-482.

[70] SEH Z W, YU J H, LI W, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nat. Commun., 2014, 5: 5017-5024.

[71] LIU Y, JIAO L, WU Q, et al. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries[J]. Nanoscale, 2013, 5: 9562-9567.

[72] ZHANG P, LU X, HUANG Y, et al. MoS2 nanosheets decorated with gold nanoparticles for rechargeable Li–O2 batteries[J]. J. Mater. Chem. A, 2015, 3: 14562-14566.

Outlines

/