Welcome to visit Advances in New and Renewable Energy!

Study on Catalytic Pyrolysis of Diatom Chaetoceros sp. by Py-GC/MS Technology

  • ZHANG Xiao-hong ,
  • SU Qiu-cheng ,
  • LIN Fu-hua ,
  • CHEN Xiao-li ,
  • FU Juan
Expand
  • Analytical and Testing Center, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2015-09-02

  Revised date: 2015-10-27

  Online published: 2015-12-30

Abstract

The catalytic pyrolysis characteristics of diatom Chaetoceros sp. powders were investigated by pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) technology. Using HZSM-5 as catalyst, the effect of Si/Al ratio in HZSM-5, catalyst consumption, pyrolysis heating rate and pyrolysis reaction time on pyrolysis products of diatom Chaetoceros sp. were studied. The results show that the pyrolysis products of diatom Chaetoceros sp. without catalysts are mainly fatty acids with the contents of 50.05%, and the contents of benzenes are only 0.87%. When catalysts were added, the contents of fatty acids are decreased and aromatic compounds are significantly increased. Pyrolysis results suggest that, desired products of 57.76% benzenes and 2.63% fatty acids could be obtained on the conditions of Si/Al ratio of 38, diatom:HZSM-5 at a 1:9 mass ratio, heating rate 10 000oC/s and reaction time of 10 s, which indicates that the reaction of deoxygenation and aromatization significantly happen with HZSM-5(38)’s addition. Thus, HZSM-5(38) is favorable for Diatom Chaetoceros sp. to produce high quality bio-oil products by catalytic pyrolysis.

Cite this article

ZHANG Xiao-hong , SU Qiu-cheng , LIN Fu-hua , CHEN Xiao-li , FU Juan . Study on Catalytic Pyrolysis of Diatom Chaetoceros sp. by Py-GC/MS Technology[J]. Advances in New and Renewable Energy, 2015 , 3(6) : 469 -476 . DOI: 10.3969/j.issn.2095-560X.2015.06.010

References

[1] BAHADAR A, KHAN M B. Progress in energy from microalgae: A review[J]. Renewable & Sustainable Energy Reviews, 2013, 27: 128-148.

[2] ZHANG Q, CHANG J, WANG T J, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Conversion and Management, 2007, 48(1): 87-92.

[3] MATA T M, MARTINS A A, CAETANO N S. Microalgae for biodiesel production and other applications: A review[J]. Renewable & Sustainable Energy Reviews, 2010, 14(1): 217-232.

[4] NAIK S N, GOUD V V, ROUT P K, et al. Production of first and second generation biofuels: A comprehensive review[J]. Renewable & Sustainable Energy Reviews, 2010, 14(2): 578-597.

[5] MARTIN M A. First generation biofuels compete[J]. New Biotechnology, 2010, 27(5): 596-608.

[6] ALONSO D M, BOND J Q, DUMESIC J A. Catalytic conversion of biomass to biofuels[J]. Green Chemistry, 2010, 12(9): 1493-1513.

[7] BRENNAN L, OWENDE P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products[J]. Renewable & Sustainable Energy Reviews, 2010, 14(2): 557-577.

[8] RAZEGHIFARD R. Algal biofuels[J]. Photosynthesis Research, 2013, 117(1-3): 207-219.

[9] ROSS A, JONES J, KUBACKI M, et al. Classification of macroalgae as fuel and its thermochemical behaviour[J]. Bioresource Technology, 2008, 99(14): 6494-6504.

[10] ZOU S, WU Y, YANG M, et al. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer[J]. Bioresource Technology, 2010, 101(1): 359-365.

[11] CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels, 2004, 18(2): 590-598.

[12] FOSTER A J, JEA J, CHENG Y T, et al. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5[J]. Applied Catalysis A General,2012, 423(18): 154-161

[13] 俞宁, 蔡忆昔, 李小华, 等. HZSM-5分子筛催化热裂解油菜秸秆制取精制生物油[J]. 农业工程学报, 2014, 30: 264-271.

[14] DU Z, MA X, LI Y, et al. Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: catalyst screening in a pyroprobe[J]. Bioresour Technol, 2013, 139: 397-401.

[15] THANGALAZHY G S, ADHIKARI S, CHATTANATHAN S A, et al. Catalytic pyrolysis of green algae for hydrocarbon production using H(+)ZSM-5 catalyst[J]. Bioresource Technology, 2012. 118: 150-157.

[16] FRENCH R, CZERNIK S. Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Processing Technology, 2010, 91(1): 25-32.

[17] MIHALCIK D J, MULLEN C A, BOATENG A A. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(1): 224-232.

[18] LI G, ZHOU Y G, ADHIKARI B, et al. Yield and Characteristics of Pyrolysis Products Obtained from Schizochytrium limacinum under Different Temperature Regimes[J]. Energies, 2013, 6(7): 3339-3352.

[19] MURADOV, N, FIDALGO B, GUJAR A C, et al. Pyrolysis of fast-growing aquatic biomass-Lemna minor (duckweed): Characterization of pyrolysis products[J]. Bioresource Technology, 2010, 101(21): 8424-8428.

[20] PAN P, HU C W, YANG W Y, et al. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils[J]. Bioresour Technol, 2010, 101(12): 4593-9.

[21] MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil: A critical review[J]. Energy & Fuels, 2006, 20(3): 848-889.

[22] CARLSON T R, TOMPSETT G A, CONNER W C, et al. Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks[J]. Topics in Catalysis, 2009, 52(3): 241-252.

[23] LI J F, YAN R, XIAO B, et al. Influence of temperature on the formation of oil from pyrolyzing palm oil wastes in a fixed bed reactor[J]. Energy & Fuels, 2007, 21(4): 2398-2407.

[24] TSAI W T, MI H H, CHANG Y M, et al. Polycyclic aromatic hydrocarbons (PAHs) in bio-crudes from induction-heating pyrolysis of biomass wastes[J]. Bioresource Technology, 2007, 98(5): 1133-1137.

Outlines

/