Welcome to visit Advances in New and Renewable Energy!

A Geomechanical Stability Model Analysis of Hydrate Reservoir for Gas Hydrate Production by Depressurization

  • CHENG Jia-wang ,
  • SU Zheng ,
  • WU Neng-you
Expand

Received date: 2015-09-16

  Revised date: 2015-12-24

  Online published: 2016-02-28

Abstract

A model based on the dynamics of fluids in porous media and poroelasticity is developed for analyzing geomechanical stability of hydrate reservoir, which is a challenge for commercial gas production from hydrate reservoir. This model, including subsidence of hydrate reservoir and wellbore stability, is applied to Gulf of Mexico, where the basic parameters and the in situ stresses are publicly published. It is concluded that subsidence of hydrate reservoir occurs due to the changes in pore pressure and the maximum subsidence occurs near the wellbore; the more hydrates decompose, the larger subsidence occurs. Decreasing well pressure will induce potential wellbore failure and the borehole failure is expected to initiate at those positions where the tangential and vertical stresses reach the maximum value. The horizontal stress contrast increases the instability of wellbore.

Cite this article

CHENG Jia-wang , SU Zheng , WU Neng-you . A Geomechanical Stability Model Analysis of Hydrate Reservoir for Gas Hydrate Production by Depressurization[J]. Advances in New and Renewable Energy, 2016 , 4(1) : 33 -41 . DOI: 10.3969/j.issn.2095-560X.2016.01.006

References

 

[1] MORIDIS G J, COLLETT T S, DALLIMORE S R, et al. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada[J]. Journal of petroleum science and engineering, 2004, 43(3/4): 219-238. DOI: 10.1016/j.petrol.2004.02.015.

[2] NAZRIDOUST K, AHMADI G. Computational modeling of methane hydrate dissociation in a sandstone core[J]. Chemical engineering science, 2007, 62(22): 6155-6177. DOI: 10.1016/j.ces.2007.06.038.

[3] MAKOGON Y F. Natural gas hydrates-a promising source of energy[J]. Journal of natural gas science and engineering, 2010, 2(1): 49-59. DOI: 10.1016/j.jngse.2009.12.004.

[4] 沈海超, 程远方, 胡晓庆. 天然气水合物藏降压开采近井储层稳定性数值模拟[J]. 石油钻探技术, 2012, 40(2): 76-81. DOI: 10.3969/j.issn.1001-0890.2012.02.015.

[5] 宁伏龙, 蒋国盛, 张凌, 等. 影响含天然气水合物地层井壁稳定的关键因素分析[J]. 石油钻探技术, 2008, 36(3): 59-61. DOI: 10.3969/j.issn.1001-0890.2008.03.014.

[6] MORIDIS G J, COLLETT T S, POOLADI-DARVISH M, et al. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits[J]. SPE reservoir evaluation & engineering, 2011, 14(1): 76-112. DOI: 10.2118/131792-PA.

[7] 吴能友, 黄丽, 苏正, 等. 海洋天然气水合物开采潜力地质评价指标研究: 理论与方法[J]. 天然气工业, 2013, 33(7): 11-17. DOI: 10.3787/j.issn.1000-0976.2013.07.002.

[8] KIMOTO S, OKA F, FUSHITA T, et al. A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation[J]. Computers and geotechnics, 2007, 34(4): 216-228. DOI: 10.1016/j.compgeo.2007.02.006.

[9] KIM J, MORIDIS G J, RUTQVIST J. Coupled flow and geomechanical analysis for gas production in the Prudhoe Bay Unit L-106 well Unit C gas hydrate deposit in Alaska[J]. Journal of petroleum science and engineering, 2012, 92-93: 143-157. DOI: 10.1016/j.petrol.2012.04.012.

[10] FREIJ-AYOUB R, TAN C, CLENNELL B, et al. A wellbore stability model for hydrate bearing sediments[J]. Journal of petroleum science and engineering, 2007, 57(1/2): 209-220. DOI: 10.1016/j.petrol.2005.10.011.

[11] HONG H F. Modeling of gas production from hydrates in porous media[D]. Calgary: University of Calgary, 2003.

[12] Bear J. Dynamics of fluids in porous media[M]. New York: American Elsevier Pub. Co., 1972.

[13] ZIMMERMAN R W. Flow in porous media[M]. London: Department of Earth Science and Engineeringe, 2002.

[14] FREEZE R A, CHERRY J A. Groundwater[M]. New Jersey: Prentice-Hall, 1979.

[15] JI C, AHMADI G, SMITH D H. Natural gas production from hydrate decomposition by depressurization[J]. Chemical engineering science, 2001, 56(20): 5801-5814. DOI: 10.1016/S0009-2509(01)00265-2.

[16] BIOT M A. General theory of three-dimensional consolidation[J]. Journal of applied physics, 1941, 12(2): 155-164. DOI: 10.1063/1.1712886.

[17] 李培超, 李贤桂, 卢德唐. 饱和土体一维固结理论的修正——饱和多孔介质流固耦合渗流模型之应用[J]. 中国科学技术大学学报, 2010, 40(12): 1273-1278. DOI: 10.3969/j.issn.0253-2778.2010.12.011.

[18] AADNOY B S. Stability of highly inclined boreholes (includes associated papers 18596 and 18736)[J]. SPE drilling engineering, 1987, 2(4): 364-374. DOI: 10.2118/16052-PA.

[19] FJAR E, HOLT R M, Horsrud P, et al. Petroleum related rock mechanics, volume 53[M]. 2nd ed. Amsterdam: Elsevier, 2008.

[20] RUTQVIST J, MORIDIS G J, GROVER T, et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J]. Journal of petroleum science and engineering, 2012, 92-93: 65-81. DOI: 10.1016/j.petrol.2012.06.004.

[21] AL-AJMI A M, ZIMMERMAN R W. Stability analysis of vertical boreholes using the Mogi-Coulomb failure criterion[J]. International journal of rock mechanics and mining sciences, 2006, 43(8): 1200-1211. DOI: 10.1016/j.ijrmms.2006.04.001.

[22] ZHANG L Y, CAO P, RADHA K C. Evaluation of rock strength criteria for wellbore stability analysis[J]. International journal of rock mechanics and mining sciences, 2010, 47(8): 1304-1316. DOI: 10.1016/j.ijrmms.2010.09.001.

[23] BIRCHWOOD R, NOETH S. Horizontal stress contrast in the shallow marine sediments of the Gulf of Mexico sites Walker Ridge 313 and Atwater Valley 13 and 14-Geological observations, effects on wellbore stability, and implications for drilling[J]. Marine and petroleum geology, 2012, 34(1): 186-208. DOI: 10.1016/j.marpetgeo.2012.01.008.
Outlines

/