Welcome to visit Advances in New and Renewable Energy!

A Numerical Study on the Effect of Fluid-Rock Reaction during Enhanced Geothermal System Heat Extraction Processes

  • CHEN Ji-liang ,
  • HUANG Wen-bo ,
  • CAO Wen-jiong ,
  • JIANG Fang-ming
Expand
  • Laboratory of Advanced Energy System, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2015-09-06

  Revised date: 2015-11-23

  Online published: 2016-02-28

Abstract

The enhanced geothermal system (EGS) circulates heat transfer fluid in the fracture network in the heat reservoir to extract heat from earth-deep hot dry rocks. During EGS operation, the heat transfer fluid may react with the rock in the heat reservoir. The dissolution/deposition of rock minerals dynamically changes the structure and morphology of fracture network in the reservoir, affecting the heat extraction process. This paper analyzes the characteristics of fluid-rock reaction in EGS reservoir, and details the method of coupling the fluid-rock reaction with thermo-fluid flow in porous medium, an equivalent model to the fractured rock reservoir. A Thermal-Hydraulic-Chemical (THC) model is established upon a previous numerical model developed by our group for heat and mass transport during EGS heat extraction processes. The new model is employed to study the long-term heat extraction process with respect to a quintuplet EGS (one injection well plus four production wells). Only interactions between water and calcite are considered in the simulation. The simulation result indicates the setting of injection temperature and mineral concentrations is crucial. If the two conditions cannot reach equilibrium state, the permeability and porosity around injection well will continually change, which will significantly change affect the flow resistance of EGS reservoir.

Cite this article

CHEN Ji-liang , HUANG Wen-bo , CAO Wen-jiong , JIANG Fang-ming . A Numerical Study on the Effect of Fluid-Rock Reaction during Enhanced Geothermal System Heat Extraction Processes[J]. Advances in New and Renewable Energy, 2016 , 4(1) : 48 -55 . DOI: 10.3969/j.issn.2095-560X.2016.01.008

References

[1] TESTER J W, ANDERSON B J, BATCHELOR A S, et al. The future of geothermal energy: impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st century[M]. Cambridge: Massachusetts Institute of Technology, 2006: 1-358.

[2] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. DOI: 10.3981/j.issn.1000-7857.2012.32.003.

[3] TENZER H. Development of hot dry rock technology[J]. Bulletin geo-heat center, 2001, 32(4): 14-22.

[4] U.S. Department of Energy. An evaluation of enhanced geothermal systems technology[R]. Washington, DC: EERE, 2008.

[5] LACIRIGNOLA M, BLANC I. Environmental analysis of practical design options for enhanced geothermal systems (EGS) through life-cycle assessment[J]. Renewable energy, 2013, 50: 901-914. DOI: 10.1016/j.renene.2012.08.005.

[6] BERTANI R. Geothermal power generation in the world 2005-2010 update report[J]. Geothermics, 2012, 41: 1-29. DOI: 10.1016/j.geothermics.2011.10.001.

[7] 庞忠和, 胡圣标, 汪集暘. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32): 18-24. DOI: 10.3981/j.issn.1000-7857.2012.32.002.

[8] MCCLURE M W. Fracture stimulation in enhanced geothermal systems[D].  San Francisco, California: Stanford University, 2009.

[9] O'SULLIVAN M J, PRUESS K, LIPPMANN M J. State of the art of geothermal reservoir simulation[J]. Geothermics, 2001, 30(4): 395-429. DOI: 10.1016/S0375-6505(01)00005-0.

[10] KOHL T, EVANSI K F, HOPKIRK R J, et al. Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs[J]. Geothermics, 1995, 24(3): 345-359. DOI: 10.1016/0375-6505(95)00013-G.

[11] JIANG F M, LUO L, CHEN J L. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems[J]. International communications in heat and mass transfer, 2013, 41: 57-62. DOI: 10.1016/j.icheatmasstransfer.2012.11.003.

[12] JIANG F M, CHEN J L, HUANG W B, et al. A three-dimensional transient model for EGS subsurface thermo-hydraulic process[J]. Energy, 2014, 72: 300-310. DOI: 10.1016/j.energy.2014.05.038.

[13] PRUESS K. The tough codes-a family of simulation tools for multiphase flow and transport processes in permeable media[J]. Vadose zone journal, 2004, 3(3): 738-746. DOI: 10.2113/3.3.738.

[14] XU T F, SONNENTHAL E, SPYCHER N, et al. TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration[J]. Computers & geosciences, 2006, 32(2): 145-165. DOI: 10.1016/j.cageo.2005.06.014.

[15] BÄCHLER D. Coupled thermal-hydraulic-chemical modelling at the Soultz-sous-Forêts HDR Reservoir (France)[D]. Zurich: Swiss Federal Institute of Technology Zurich, 2003.

[16] CLAUSER C. Numerical simulation of reactive flow in hot aquifers: SHEMAT and processing SHEMAT[M]. Berlin Heidelberg: Springer, 2003.

[17] WOLERY T J. EQ3NR, a Computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, user's guide and related documentation (version 7.0)[M]. California: Lawrence Livermore Laboratory, University of California, 1992.

[18] LASAGA A C. Chemical kinetics of water-rock interactions[J]. Journal of geophysical research: solid earth (1978-2012), 1984, 89(B6): 4009-4025. DOI: 10.1029/JB089iB06p04009.

[19] BRANTLEY S L, KUBICKI J D, WHITE A F. Kinetics of water-rock interaction[M]. New York: Springer, 2008.

[20] PALANDRI J L, KHARAKA Y K. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling[R]. Menlo Park, California: National Energy Technology Laboratory-United States Department of Energy, 2004.

[21] BLANC P, LASSIN A, PIANTONE P, et al. Thermoddem: a geochemical database focused on low temperature water/rock interactions and waste materials[J]. Applied geochemistry, 2012, 27(10): 2107-2116. DOI: 10.1016/j.apgeochem.2012.06.002.

[22] ANDRE L, SPYCHER N, XU T, et al. Comparing FRACHEM and TOUGHREACT for reactive transport modeling of brine-rock interactions in Enhanced Geothermal Systems (EGS)[C]//31st workshop on geothermal reservoir engineering. Stanford, California: Stanford University, 2006.

[23] MACQUARRIE K T B, MAYER K U. Reactive transport modeling in fractured rock: a state-of-the-science review[J]. Earth-science reviews, 2005, 72(3/4): 189-227. DOI: 10.1016/j.earscirev.2005.07.003.

[24] XU P, YU B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources, 2008, 31(1): 74-81. DOI: 10.1016/j.advwatres.2007.06.003.

[25] EHRENBERG S N, NADEAU P H. Sandstone vs. carbonate petroleum reservoirs: a global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG bulletin, 2005, 89(4): 435-445. DOI: 10.1306/11230404071.

Outlines

/