Advances in New and Renewable Energy >
Effects of Lift-tube Diameter on Performance of Bubble Pump with Organic Working Fluids
Received date: 2015-11-15
Revised date: 2015-12-07
Online published: 2016-02-28
As a key component in diffusion absorption refrigeration systems, the bubble pump is the motive force and has great effect on the performance and stable operation of the refrigeration unit. Based on drift-flux model, a mathematical model for the bubble pump in the diffusion absorption refrigeration system is established under MATLAB.used in the diffusion absorption refrigeration system with TFE (2,2,2-trifluoroethanol)/E181 (tetraethylene glycol dimethyl ether) mixture is used as working fluids is developed in this paper. With MATLAB, tThe effects of the lift-tube diameter on the TFE/E181 bubble pump performance, including solution mass flow rate and efficiency, have been were investigated under different submergence ratio and heating power. The results show that the TFE/E181 bubble pump performance changing with the lift-tube diameter is closely linked to the submergence ratio and heating power. When the submergence ratio ranges from 0.2 to 0.7 and heating power is between 200 W and 1200 W, there exists an optimum diameter for the lift-tube that can make the solution mass flow rate as well as efficiency of the bubble pump maximum. With the submergence ratio and heating power increased, the optimum diameter increases till it reaches slug flow’s limitation. In addition, for the lift-tube with a certain diameter, the solution mass flow rate and efficiency of the TFE/E181 bubble pump increase with the increase in the submergence ratio, but their variation trends with the increased heating power depend on the size of lift-tube diameter.
Key words: bubble pump; drift-flux model; lift-tube diameter; submergence ratio; heating power
LI Hua-shan , WANG Ling-bao , BU Xian-biao , MA Wei-bin . Effects of Lift-tube Diameter on Performance of Bubble Pump with Organic Working Fluids[J]. Advances in New and Renewable Energy, 2016 , 4(1) : 56 -61 . DOI: 10.3969/j.issn.2095-560X.2016.01.009
[1] 曹园树, 李华山, 龙臻, 等. 扩散吸收式制冷技术进展[J]. 新能源进展, 2014, 2(1): 63-69. DOI:10.3969/j.issn.2095-560X.2014.01.011.
[2] DELANO A D. Design analysis of the Einstein refrigeration cycle[D]. Atlanta: Georgia Institute of Technology, 1999.
[3] WHITE S J. Bubble pump design and performance[D]. Atlanta: Georgia Institute of Technology, 2001.
[4] RATTNER A S, GARIMELLA S. Coupling-fluid heated bubble pump generators: experiments and model development[J]. Science and technology for the built environment, 2015, 21(3): 332-347. DOI: 10.1080/10789669.2015.1004978.
[5] GUREVICH B, JELINEK M, LEVY A, et al. Performance of a set of parallel bubble pumps operating with a binary solution of R134a-DMAC[J]. Applied thermal engineering, 2015, 75: 724-730. DOI: 10.1016/j.applthermaleng.2014.09.074.
[6] 陆引哲, 刘道平, 徐煌栋. 多管式气泡泵设计[J]. 热能动力工程, 2015, 30(2): 212-217.
[7] 陈永军, 刘道平, 眭阳, 等. 冷态工况下变截面管气泡泵提升特性试验研究[J]. 流体机械, 2015, 43(3): 47-51, 82. DOI: 10.3969/j.issn.1005-0329.2015.03.010.
[8] RODRÍGUEZ-MUÑOZ J L, BELMAN-FLORES J M. Review of diffusion-absorption refrigeration technologies[J]. Renewable and sustainable energy reviews, 2014, 30: 145-153. DOI: 0.1016/j.rser.2013.09.019.
[9] 徐士鸣, 任国红, 陈石. TFE-TEGDME吸收式制冷/热泵工质热物性参数表达式[J]. 大连理工大学学报, 2002, 42(1): 60-64. DOI: 10.3321/j.issn:1000-8608.2002.01.015.
[10] MEDRANO M, BOUROUIS M, CORONAS A. Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs[J]. Applied energy, 2001, 68(2): 173-185. DOI: 10.1016/S0306-2619(00)00048-9.
[11] 苏保国, 任国红, 宋振寰. 以TFE-TEGDME为工质的制冷循环分析[J]. 制冷技术, 2003(1): 25-28.
[12] CORONAS A, VALLÉS M, CHAUDHARI S K, et al. Absorption heat pump with the TFE-TEGDME and TFE-H2O-TEGDME systems[J]. Applied thermal engineering, 1996, 16(4): 335-345. DOI: 10.1016/1359-4311(95)00007-0.
[13] 赵宗昌, 周方伟, 李凇平. TFE-E181高温型第二类吸收式热泵热力过程分析[J]. 大连理工大学学报, 2004, 44(5): 651-656. DOI: 10.3321/j.issn:1000-8608.2004.05.006.
[14] ZHAO Z C, ZHANG X D, MA X H. Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid[J]. Applied energy, 2005, 82(2): 107-116. DOI: 10.1016/j.apenergy.2004.10.012.
[15] 赵宗昌, 周方伟, 李凇平. TFE-E181双吸收热变换器热力过程分析[J]. 大连理工大学学报, 2003, 43(5): 604-608. DOI: 10.3321/j.issn:1000-8608.2003.05.014.
[16] LONG Z, LUO Y, LI H S, et al. Performance analysis of a diffusion absorption refrigeration cycle working with TFE-TEGDME mixture[J]. Energy and buildings, 2012, 58: 86-92. DOI: 10.1016/j.enbuild.2012.12.003.
[17] 孟凡基, 龙臻, 李华山, 等. TFE-TEGDME-He扩散-吸收式制冷系统实验研究[J]. 低温与超导, 2014, 42(6): 58-62, 67.
[18] BENHMIDENE A, CHAOUACHI B, GABSI S, et al. Modeling of boiling two-phase flow in the bubble pump of diffusion-absorption refrigeration cycles[J]. Chemical engineering communications, 2015, 202(1): 15-24. DOI: 10.1080/00986445.2013.828608.
[19] JO S W, SHERIF S A, LEAR W E. Numerical simulation of saturated flow boiling heat transfer of ammonia/water mixture in bubble pumps for absorption-diffusion refrigerators[J]. Journal of thermal science and engineering applications, 2014, 6(1): 011007. DOI: 10.1115/1.4025091.
[20] 叶鹏, 刘道平, 梁俣. 单压吸收式制冷系统气泡泵理论模型与验证[J]. 低温与超导, 2013, 41(12): 79-82. DOI: 10.3969/j.issn.1001-7100.2013.12.018.
[21] BEATTIE D R H, WHALLEY P B. A simple two-phase frictional pressure drop calculation method[J]. International journal of multiphase flow, 1982, 8(1): 83-87. DOI: 10.1016/0301-9322(82)90009-X.
[22] 孙奇, 赵华, 杨瑞昌, 等. 垂直上升两相流漂移流模型研究[J]. 核动力工程, 2006, 27(2): 40-44. DOI: 10.3969/j.issn.0258-0926.2006.02.010.
[23] ZUBER N, FINDLAY J A. Average volumetric concentration in two-phase flow systems[J]. Journal of heat transfer, 1965, 87(4): 453-468. DOI: 10.1115/1.3689137.
[24] DE CACHARD F, DELHAYE J M. A slug-churn flow model for small-diameter airlift pumps[J]. International journal of multiphase flow, 1996, 22(4): 627-649. DOI: 10.1016/0301-9322(96)00003-1.
[25] HERRAIZ J, OLIVÉ F, ZHU S M, et al. Thermophysical properties of 2, 2, 2-trifluoroethanol+tetraethylene glycol dimethyl ether[J]. Journal of chemical & engineering data, 1999, 44(4): 750-756. DOI: 10.1021/je980284r.
[26] OGAWA K, ISSHIKI N, KOGA H, et al. Measurement of surface tension of TFE/E181 and TFE/NMP binary systems[C]//2nd pacific Asia conference on mechanical engineering. Manila Philippines, 1998: 639-647.
[27] POLING B E, PRAUSNITZ J M, O’CONNELL J P. 气液物性估算手册[M]. 赵红玲, 王凤坤, 陈圣坤, 等译. 北京: 化学工业出版社, 2006.
[28] 陈学俊, 陈立勋, 周芳德. 气液两相流与传热基础[M]. 北京: 科学出版社, 1995.
/
〈 |
|
〉 |