Welcome to visit Advances in New and Renewable Energy!

Benzothiophene Catalytic Oxidation Removal with Ti-MCM-41/Sodium Hypochlorite in Model Oil

  • YU Si-yu ,
  • PENG Jing ,
  • WANG Han-lu ,
  • MO Gui-di ,
  • YANG Xiao-yong
Expand
  • Guangdong University of Petrochemical Technology, College of Chemistry Engineering, Maoming 525000, Guangdong, China

Received date: 2015-11-27

  Revised date: 2015-12-23

  Online published: 2016-02-28

Abstract

Mesoporous molecular sieve Ti-MCM-41 was synthesized by hydrothermal method and characterized by using X ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-vis DR) and BET nitrogen adsorption desorption isotherm method. The catalytic oxidation reaction conditions and the kinetic parameters were investigated with Ti-MCM-41/NaClO as catalytic oxidant in the model oil consisting of n-heptane and benzothiophene. The results suggested that the sulfur removal rate was 68% under reaction temperature of 308 K, reaction time of 40 min, NaClO dosage of 3 mL, Ti-MCM-41 dosage of 0.05 g and extracting agent CH3CN dosage of 10 mL. The kinetic analysis indicated that showed benzothiophene oxidation reaction was a first-order reaction and the apparent activation energy (Ea) was 56.55 kJ/mol. The results showed that the Ti-MCM-41/NaClO wais effective in catalytic oxidation desulfurization.

Cite this article

YU Si-yu , PENG Jing , WANG Han-lu , MO Gui-di , YANG Xiao-yong . Benzothiophene Catalytic Oxidation Removal with Ti-MCM-41/Sodium Hypochlorite in Model Oil[J]. Advances in New and Renewable Energy, 2016 , 4(1) : 62 -67 . DOI: 10.3969/j.issn.2095-560X.2016.01.010

References

[1] LI F T, WU B, LIU R H, et al. An inexpensive N-methyl-2-pyrrolidone-based ionic liquid as efficient extractant and catalyst for desulfurization of dibenzothiophene[J]. Chemical engineering journal, 2015, 274: 192-199. DOI: 10.1016/j.cej.2015.04.027.

[2] ZHENG D, ZHU W S, XUN S H, et al. Deep oxidative desulfurization of dibenzothiophene using low-temperature-mediated titanium dioxide catalyst in ionic liquids[J]. Fuel, 2015, 159: 446-453. DOI: 10.1016/j.fuel.2015.06.090.

[3] 刘学成, 黄宏宇, 大阪侑吾, 等. 用于柴油机尾气脱硫捕集器的干式脱硫材料研究进展[J]. 新能源进展, 2015, 3(4): 299-304. DOI: 10.3969/j.issn.2095-560X.2015.04.009.

[4] ABU BAKAR W A W, ALI R, KADIR A A A, et al. Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel[J]. Fuel processing technology, 2012, 101: 78-84. DOI: 10.1016/j.fuproc.2012.04.004.

[5] ZHAO N, LI S W, WANG J Y, et al. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization[J]. Journal of solid state chemistry, 2015, 225: 347-353. DOI: 10.1016/j.jssc.2015.01.009.

[6] LV Q, LI G, SUN H Y. Synthesis of hierarchical TS-1 with convenient separation and the application for the oxidative desulfurization of bulky and small reactants[J]. Fuel, 2014, 130: 70-75. DOI: 10.1016/j.fuel.2014.04.042.

[7] 王云, 李钢, 王祥生, 等. Ti-HMS催化氧化脱除模拟燃料的中硫化物[J]. 催化学报,2005, 26(7): 567-570. DOI: 10.3321/j.issn:0253-9837.2005.07.010.

[8] SAMOKHVALOV A. Desulfurization of real and model liquid fuels using light: photocatalysis and photochemistry[J]. Catalysis reviews: science and engineering, 2012, 54(3): 281-343. DOI:10.1080/01614940.2012.650958.

[9] 汪颖军, 刘闯, 孙裔磊, 等. MCM-41介孔分子筛的合成、改性及应用研究进展[J]. 能源化工, 2015, 36(2): 46-51. DOI: 10.3969/j.issn.1006-7906.2015.02.012.

[10] BRAGA FONTES M D S, DE ARAÚJO MELO D M, DE CASTRO COSTA C, et al. Comparison of kinetic study of CTMA+ removal of molecular sieve Ti-MCM-41 synthesized with natural and commercial silica[J]. Materials research, 2015, 18(3): 608-613. DOI: 10.1590/1516-1439.019015.

[11] RASALINGAM S, PENG R, KOODALI R T. An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials[J]. Applied Catalysis B, 2015, 174-175: 49-59. DOI: 10.1016/j.apcatb.2015.02.040.

[12] WU H Y, BAI H, WU J C S. Photocatalytic Reduction of CO2 using Ti-MCM-41 photocatalysts in monoethanolamine solution for methane production[J]. Industrial & engineering chemistry research, 2014, 53(28): 11221-11227. DOI: 10.1021/ie403742j.

[13] QI B, LOU L L, WANG Y B, et al. Comparison of different prepared Mn-MCM-41 catalysts in the catalytic epoxidation of alkenes with 30% H2O2[J]. Microporous and mesoporous materials, 2014, 190: 275-283. DOI:10.1016/j.micromeso.2014.02.018.

[14] ZHANG S C, JIANG Y Q, LI S Y, et al. Synthesis of bimodal mesoporous titanosilicate beads and their application as green epoxidation catalyst[J]. Applied catalysis a, 2015, 490: 57-64. DOI:10.1016/j.apcata.2014.11.004.

[15] CAO Z K, DUAN A J, ZHAO Z, et al. A simple two-step method to synthesize the well-ordered mesoporous composite Ti-FDU-12 and its application in the hydrodesulfurization of DBT and 4, 6-DMDBT[J]. Journal of materials chemistry a, 2014, 2(46): 19738-19749. DOI: 10.1039/C4TA03691C.

[16] 王广建, 杨志坚. 微波合成Ti-MCM-41介孔分子筛及其动态脱硫性能[J]. 工业催化, 2013, 21(7): 25-29. DOI: 10.3969/j.issn.1008-1143.2013.07.006.

[17] OPEMBE N N, VUNAIN E, MISHRA A K, et al. Thermal stability of Ti-MCM-41[J]. Journal of thermal analysis and calorimetry, 2014, 117(2): 701-710. DOI: 10.1007/s10973-014-3750-2.

[18] HE D W, BAI C C, JIANG C W, et al. Synthesis of titanium containing MCM-41 and its application for catalytic hydrolysis of cellulose[J]. Powder technology, 2013, 249: 151-156. DOI:10.1016/j.powtec.2013.07.026.

[19] WANG J J, LU J M, YANG J H, et al. Ti containing mesoporous silica submicrometer-sphere, with tunable particle size for styrene oxidation[J]. Applied surface science, 2013, 283: 794-801. DOI:10.1016/j.apsusc.2013.07.020.

Outlines

/