Welcome to visit Advances in New and Renewable Energy!

Determination of Flavonoids from Four Energy Grasses

  • YANG Li-gui ,
  • SUN Yong-ming ,
  • KONG Xiao-ying ,
  • LI Lian-hua ,
  • LIU Shu-na ,
  • DONG Peng-yu ,
  • YUAN Zhen-hong
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-04-26

  Revised date: 2016-06-12

  Online published: 2016-06-27

Abstract

The total flavonoid contents in four common energy grasses (hybrid Pennisetum, switchgrass, giant reed, elephant grass) including whole strain, stems and leaves were quantified. The flavonoids were detected by LC-MS. For the whole strains, switchgrass has a flavonoids content of 6.84 mg quercetin equivalents/g dry weight, which is 59.8%, 20.1% and 11.2% higher than giant reed, hybrid Pennisetum and elephant grass. The content in leaves is 2.3 ~ 3.0 times to stems, the contents in hybrid Pennisetum leaves is 10.55 mg quercetin equivalents/g dry weight, which is the highest among all these samples. 14 flavonoid glycosides and 2 flavonols were identified in the extracts of four grasses. Quercetin, isorhamnetin and quercitrin are identified positively with standards. This research may provide a theoretical support for the value added phytochemicals extract from energy grass.

Cite this article

YANG Li-gui , SUN Yong-ming , KONG Xiao-ying , LI Lian-hua , LIU Shu-na , DONG Peng-yu , YUAN Zhen-hong . Determination of Flavonoids from Four Energy Grasses[J]. Advances in New and Renewable Energy, 2016 , 4(3) : 225 -231 . DOI: 10.3969/j.issn.2095-560X.2016.03.010

References

[1] LI L H, KONG X Y, YANG F Y, et al. Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass[J]. Applied biochemistry and biotechnology, 2012, 166(5): 1183-1191. DOI: 10.1007/s12010-011-9503-9.

[2] ZHANG J Z, SONG Y L, WANG B W, et al. Biomass to bio-ethanol: the evaluation of hybrid Pennisetum used as raw material for bio-ethanol production compared with corn stalk by steam explosion joint use of mild chemicals[J]. Renewable energy, 2016, 88: 164-170. DOI: 10.1016/j.renene.2015.11.034.

[3] GE X M, BURNER D M, XU J F, et al. Bioethanol production from dedicated energy crops and residues in Arkansas, USA[J]. Biotechnology journal, 2011, 6(1): 66-73. DOI: 10.1002/biot.201000240.

[4] KARUNANITHY C, WANG Y, MUTHUKUMARAPPAN K, et al. Physiochemical characterization of briquettes made from different feedstocks[J]. Biotechnology research international, 2012, 2012: 165202. DOI: 10.1155/2012/165202.

[5] RAVINDRANATH S V, UPPUGUNDLA N, LAY J O, et al. Policosanol, α-tocopherol, and moisture content as a function of timing of harvest of Switchgrass (Panicum virgatum L.)[J]. Journal of agriculture and food chemistry, 2009, 57(9): 3500-3505. DOI: 10.1021/jf803846e.

[6] EKENSEAIR A K, DUAN L J, CARRIER D J, et al. Extraction of hyperoside and quercitrin from mimosa (Albizia julibrissin) foliage[J]. Applied biochemistry and biotechnology, 2006, 130(1/3): 382-391. DOI: 10.1385/ ABAB:130:1:382.

[7] ROSS A B, SHEPHERD M J, SCHÜPPHAUS M, et al. Alkylresorcinols in cereals and cereal products[J]. Journal of agricultural and food chemistry, 2003, 51(14): 4111-4118. DOI: 10.1021/jf0340456.

[8] GUTIÉRREZ A, DEL RI?O J C, GONZÁLEZ-VILA F J, et al. Analysis of lipophilic extractives from wood and pitch deposits by solid-phase extraction and gas chromatography[J]. Journal of chromatography A, 1998, 823(1/2): 449-455. DOI: 10.1016/S0021-9673(98)00356-2.

[9] BIESAGA M. Influence of extraction methods on stability of flavonoids[J]. Journal of chromatography A, 2011, 1218(18): 2505-2512. DOI: 10.1016/j.chroma.2011.02.059.

[10] LAU C S, CARRIER D J, BEITLE R R, et al. Identification and quantification of glycoside flavonoids in the energy crop Albizia julibrissin[J]. Bioresource technology, 2007, 98(2): 429-435. DOI: 10.1016/j.biortech. 2005.12.011.

[11] TSIMOGIANNIS, SAMIOTAKI M, PANAYOTOU G, et al. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS[J]. Molecules, 2007, 12(3): 593-606. DOI: 10.3390/12030593.

[12] FABRE N, RUSTAN I, DE HOFFMANN E, et al. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry[J]. Journal of the American society for mass spectrometry, 2001, 12(6): 707-715. DOI: 10.1016/S1044-0305(01)00226-4.

[13] UPPUGUNDLA N, ENGELBERTH A, VANDHANA RAVINDRANATH S, et al. Switchgrass water extracts: extraction, separation and biological activity of rutin and quercitrin[J]. Journal of agricultural and food chemistry, 2009, 57(17): 7763-7770. DOI: 10.1021/jf900998q.

[14] SIMIRGIOTIS M J, ADACHI S, TO S, et al. Cytotoxic chalcones and antioxidants from the fruits of Syzygium samarangense (Wax Jambu)[J]. Food chemistry, 2008, 107(2): 813-819. DOI: 10.1016/j.foodchem.2007.08.086.

[15] BAJPAI P K, WARGHAT A R, DHAR P, et al. Variability and relationship of fruit color and sampling location with antioxidant capacities and bioactive content in Morus alba L. fruit from trans-Himalaya, India[J]. Lwt-food science and technology, 2014, 59(2): 981-988. DOI: 10.1016/j.lwt.2014.07.055.

[16] FAN R, YUAN F, WANG N, et al. Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L.[J]. Journal of food science and technology, 2015, 52(5): 2690-2700. DOI: 10.1007/ s13197-014-1360-4.

[17] DAS N, ISLAM M E, JAHAN N, et al. Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds[J]. BMC complementary and alternative medicine, 2014, 14(1): 45. DOI: 10.1186/1472-6882-14-45.

[18] MILOŠEVI? T, MILOŠEVI? N, GLIŠI? I. Apricot vegetative growth, tree mortality, productivity, fruit quality and leaf nutrient composition as affected by myrobalan rootstock and blackthorn inter-stem[J]. Erwerbs-obstbau, 2015, 57(2): 77-91. DOI: 10.1007/ s10341-014-0229-z.

[19] ABDENNACER, KARIM M, YASSINE M, et al. Determination of phytochemicals and antioxidant activity of methanol extracts obtained from the fruit and leaves of Tunisian Lycium intricatum Boiss[J]. Food chemistry, 2015, 174(1): 577-584. DOI: 10.1016/j.foodchem.2014.11.114.

[20] SULTANA B, HUSSAIN Z, ASIF M, et al. Investigation on the antioxidant activity of leaves, peels, stems bark, and kernel of mango (Mangifera indica L.)[J]. Journal of food science, 2012, 77(8): C849-C852. DOI: 10.1111/j.1750-3841.2012.02807.x.

[21] LIN L Z, HARNLY J M. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials[J]. Journal of agricultural and food chemistry, 2007, 55(4): 1084-1096. DOI: 10.1021/jf062431s.

[22] CUYCKENS F, CLAEYS M. Mass spectrometry in the structural analysis of flavonoids[J]. Journal of mass spectrometry, 2004, 39(1): 1-15. DOI: 10.1002/jms.585.

[23] DE RIJKE E, OUT P, NIESSEN W M A, et al. Analytical separation and detection methods for flavonoids[J]. Journal of chromatography A, 2006, 1112(1/2): 31-63. DOI: 10.1016/j.chroma.2006.01.019.

[24] STEVENS J F, WOLLENWEBER E, IVANCIC M, et al. Leaf surface flavonoids of Chrysothamnus[J]. Phytochemistry, 1999, 51(6): 771-780. DOI: 10.1016/S0031-9422(99)00110-7.

[25] DE RIJKE E, ZAPPEY H, ARIESE F, et al. Liquid chromatography with atmospheric pressure chemical ionization and electrospray ionization mass spectrometry of flavonoids with triple-quadrupole and ion-trap instruments[J]. Journal of chromatography A, 2003, 984(1): 45-58. DOI: 10.1016/S0021-9673(02)01868-X.

[26] GRAYER R J, VEITCH N C, KITE G C, et al. Distribution of 8-oxygenated leaf-surface flavones in the genus Ocimum[J]. Phytochemistry, 2001, 56(6): 559-567. DOI: 10.1016/S0031-9422(00)00439-8.

[27] BOWIE J H, WHITE P Y. Electron impact studies. Part XXXIX. proximity effects in the mass spectra of aromatic carbonyl compounds containing adjacent methoxy-substituents[J]. Journal of the chemical society B-physical organic, 1969: 89-93. DOI: 10.1039/ J29690000089.

Outlines

/