Advances in New and Renewable Energy >
Determination of Flavonoids from Four Energy Grasses
Received date: 2016-04-26
Revised date: 2016-06-12
Online published: 2016-06-27
The total flavonoid contents in four common energy grasses (hybrid Pennisetum, switchgrass, giant reed, elephant grass) including whole strain, stems and leaves were quantified. The flavonoids were detected by LC-MS. For the whole strains, switchgrass has a flavonoids content of 6.84 mg quercetin equivalents/g dry weight, which is 59.8%, 20.1% and 11.2% higher than giant reed, hybrid Pennisetum and elephant grass. The content in leaves is 2.3 ~ 3.0 times to stems, the contents in hybrid Pennisetum leaves is 10.55 mg quercetin equivalents/g dry weight, which is the highest among all these samples. 14 flavonoid glycosides and 2 flavonols were identified in the extracts of four grasses. Quercetin, isorhamnetin and quercitrin are identified positively with standards. This research may provide a theoretical support for the value added phytochemicals extract from energy grass.
Key words: energy grass; LC-MS; flavonoid glycosides; flavonol; total flavonoid content
YANG Li-gui , SUN Yong-ming , KONG Xiao-ying , LI Lian-hua , LIU Shu-na , DONG Peng-yu , YUAN Zhen-hong . Determination of Flavonoids from Four Energy Grasses[J]. Advances in New and Renewable Energy, 2016 , 4(3) : 225 -231 . DOI: 10.3969/j.issn.2095-560X.2016.03.010
[1] LI L H, KONG X Y, YANG F Y, et al. Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass[J]. Applied biochemistry and biotechnology, 2012, 166(5): 1183-1191. DOI: 10.1007/s12010-011-9503-9.
[2] ZHANG J Z, SONG Y L, WANG B W, et al. Biomass to bio-ethanol: the evaluation of hybrid Pennisetum used as raw material for bio-ethanol production compared with corn stalk by steam explosion joint use of mild chemicals[J]. Renewable energy, 2016, 88: 164-170. DOI: 10.1016/j.renene.2015.11.034.
[3] GE X M, BURNER D M, XU J F, et al. Bioethanol production from dedicated energy crops and residues in Arkansas, USA[J]. Biotechnology journal, 2011, 6(1): 66-73. DOI: 10.1002/biot.201000240.
[4] KARUNANITHY C, WANG Y, MUTHUKUMARAPPAN K, et al. Physiochemical characterization of briquettes made from different feedstocks[J]. Biotechnology research international, 2012, 2012: 165202. DOI: 10.1155/2012/165202.
[5] RAVINDRANATH S V, UPPUGUNDLA N, LAY J O, et al. Policosanol, α-tocopherol, and moisture content as a function of timing of harvest of Switchgrass (Panicum virgatum L.)[J]. Journal of agriculture and food chemistry, 2009, 57(9): 3500-3505. DOI: 10.1021/jf803846e.
[6] EKENSEAIR A K, DUAN L J, CARRIER D J, et al. Extraction of hyperoside and quercitrin from mimosa (Albizia julibrissin) foliage[J]. Applied biochemistry and biotechnology, 2006, 130(1/3): 382-391. DOI: 10.1385/ ABAB:130:1:382.
[7] ROSS A B, SHEPHERD M J, SCHÜPPHAUS M, et al. Alkylresorcinols in cereals and cereal products[J]. Journal of agricultural and food chemistry, 2003, 51(14): 4111-4118. DOI: 10.1021/jf0340456.
[8] GUTIÉRREZ A, DEL RI?O J C, GONZÁLEZ-VILA F J, et al. Analysis of lipophilic extractives from wood and pitch deposits by solid-phase extraction and gas chromatography[J]. Journal of chromatography A, 1998, 823(1/2): 449-455. DOI: 10.1016/S0021-9673(98)00356-2.
[9] BIESAGA M. Influence of extraction methods on stability of flavonoids[J]. Journal of chromatography A, 2011, 1218(18): 2505-2512. DOI: 10.1016/j.chroma.2011.02.059.
[10] LAU C S, CARRIER D J, BEITLE R R, et al. Identification and quantification of glycoside flavonoids in the energy crop Albizia julibrissin[J]. Bioresource technology, 2007, 98(2): 429-435. DOI: 10.1016/j.biortech. 2005.12.011.
[11] TSIMOGIANNIS, SAMIOTAKI M, PANAYOTOU G, et al. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS[J]. Molecules, 2007, 12(3): 593-606. DOI: 10.3390/12030593.
[12] FABRE N, RUSTAN I, DE HOFFMANN E, et al. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry[J]. Journal of the American society for mass spectrometry, 2001, 12(6): 707-715. DOI: 10.1016/S1044-0305(01)00226-4.
[13] UPPUGUNDLA N, ENGELBERTH A, VANDHANA RAVINDRANATH S, et al. Switchgrass water extracts: extraction, separation and biological activity of rutin and quercitrin[J]. Journal of agricultural and food chemistry, 2009, 57(17): 7763-7770. DOI: 10.1021/jf900998q.
[14] SIMIRGIOTIS M J, ADACHI S, TO S, et al. Cytotoxic chalcones and antioxidants from the fruits of Syzygium samarangense (Wax Jambu)[J]. Food chemistry, 2008, 107(2): 813-819. DOI: 10.1016/j.foodchem.2007.08.086.
[15] BAJPAI P K, WARGHAT A R, DHAR P, et al. Variability and relationship of fruit color and sampling location with antioxidant capacities and bioactive content in Morus alba L. fruit from trans-Himalaya, India[J]. Lwt-food science and technology, 2014, 59(2): 981-988. DOI: 10.1016/j.lwt.2014.07.055.
[16] FAN R, YUAN F, WANG N, et al. Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L.[J]. Journal of food science and technology, 2015, 52(5): 2690-2700. DOI: 10.1007/ s13197-014-1360-4.
[17] DAS N, ISLAM M E, JAHAN N, et al. Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds[J]. BMC complementary and alternative medicine, 2014, 14(1): 45. DOI: 10.1186/1472-6882-14-45.
[18] MILOŠEVI? T, MILOŠEVI? N, GLIŠI? I. Apricot vegetative growth, tree mortality, productivity, fruit quality and leaf nutrient composition as affected by myrobalan rootstock and blackthorn inter-stem[J]. Erwerbs-obstbau, 2015, 57(2): 77-91. DOI: 10.1007/ s10341-014-0229-z.
[19] ABDENNACER, KARIM M, YASSINE M, et al. Determination of phytochemicals and antioxidant activity of methanol extracts obtained from the fruit and leaves of Tunisian Lycium intricatum Boiss[J]. Food chemistry, 2015, 174(1): 577-584. DOI: 10.1016/j.foodchem.2014.11.114.
[20] SULTANA B, HUSSAIN Z, ASIF M, et al. Investigation on the antioxidant activity of leaves, peels, stems bark, and kernel of mango (Mangifera indica L.)[J]. Journal of food science, 2012, 77(8): C849-C852. DOI: 10.1111/j.1750-3841.2012.02807.x.
[21] LIN L Z, HARNLY J M. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials[J]. Journal of agricultural and food chemistry, 2007, 55(4): 1084-1096. DOI: 10.1021/jf062431s.
[22] CUYCKENS F, CLAEYS M. Mass spectrometry in the structural analysis of flavonoids[J]. Journal of mass spectrometry, 2004, 39(1): 1-15. DOI: 10.1002/jms.585.
[23] DE RIJKE E, OUT P, NIESSEN W M A, et al. Analytical separation and detection methods for flavonoids[J]. Journal of chromatography A, 2006, 1112(1/2): 31-63. DOI: 10.1016/j.chroma.2006.01.019.
[24] STEVENS J F, WOLLENWEBER E, IVANCIC M, et al. Leaf surface flavonoids of Chrysothamnus[J]. Phytochemistry, 1999, 51(6): 771-780. DOI: 10.1016/S0031-9422(99)00110-7.
[25] DE RIJKE E, ZAPPEY H, ARIESE F, et al. Liquid chromatography with atmospheric pressure chemical ionization and electrospray ionization mass spectrometry of flavonoids with triple-quadrupole and ion-trap instruments[J]. Journal of chromatography A, 2003, 984(1): 45-58. DOI: 10.1016/S0021-9673(02)01868-X.
[26] GRAYER R J, VEITCH N C, KITE G C, et al. Distribution of 8-oxygenated leaf-surface flavones in the genus Ocimum[J]. Phytochemistry, 2001, 56(6): 559-567. DOI: 10.1016/S0031-9422(00)00439-8.
[27] BOWIE J H, WHITE P Y. Electron impact studies. Part XXXIX. proximity effects in the mass spectra of aromatic carbonyl compounds containing adjacent methoxy-substituents[J]. Journal of the chemical society B-physical organic, 1969: 89-93. DOI: 10.1039/ J29690000089.
/
〈 |
|
〉 |