Welcome to visit Advances in New and Renewable Energy!

An Overview of Tar and Dust Removal from Biomass-Derived Syngas by Streamer Corona Discharges

Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China;
    5. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310028, China

Received date: 2016-05-30

  Revised date: 2016-06-27

  Online published: 2016-06-27

Abstract

A high-efficiency method of tar and dust removal from fuel gas is of great significance to the development of biomass gasification. Streamer corona discharges, which can not only effectively crack the heavy organics to light molecules in raw syngas in reaction with O, H, OH radicals but also charge and separate the dust from the raw syngas with pulsed coronas, is a promising method for raw syngas cleaning. In this paper the status of tar and dust removal by streamer corona discharges were reviewed; issues on mechanism of tar cracking and dust abatement,current situation, key scientific and technical problems of the tar and dust removal from the biomass-derived syngas were analyzed. A conceptual design of an electrocyclone plasma reactor for simultaneous tar and dust removal was proposed. Finally, for the purpose of solving the problems of raw syngas cleaning during biomass gasification, several key research areas were briefly addressed.

Cite this article

XIE Jian-jun|XU Bin|YIN Xiu-li|WU Chuang-zhi|YAN Ke-ping . An Overview of Tar and Dust Removal from Biomass-Derived Syngas by Streamer Corona Discharges[J]. Advances in New and Renewable Energy, 2016 , 4(3) : 232 -239 . DOI: 10.3969/j.issn.2095-560X.2016.03.011

References

[1] DAHMEN N, DINJUS E, KOLB T, et al. State of the art of the bioliq® process for synthetic biofuels production[J]. Environmental progress & sustainable energy, 2012, 31(2): 176-181. DOI: 10.1002/ep.10624.

[2] PEREIRA E G, DA SILVA J N, DE OLIVEIRA J L, et al. Sustainable energy: a review of gasification technologies[J]. Renewable and sustainable energy reviews, 2012, 16(7): 4753-4762. DOI: 10.1016/j.rser. 2012.04.023.

[3] BALIBAN R C, ELIA J A, FLOUDAS C A. Biomass to liquid transportation fuels (BTL) systems: process synthesis and global optimization framework[J]. Energy & environmental science, 2013, 6(1): 267-287. DOI: 10.1039/C2EE23369J.

[4] ASADULLAH M. Barriers of commercial power generation using biomass gasification gas: a review[J]. Renewable and sustainable energy reviews, 2014, 29: 201-215. DOI: 10.1016/j.rser.2013.08.074.

[5] HASLER P, NUSSBAUMER T. Gas cleaning for IC engine applications from fixed bed biomass gasification[J]. Biomass and bioenergy, 1999, 16(6): 385-395. DOI: doi:10.1016/S0961-9534(99)00018-5.

[6] NEEFT J P A, KNOEF H A M, ONAJI P, et al. Behaviour of tar in biomass gasification systems: tar related problems and their solutions[R]. Novem Report No. 9919. The Netherlands: Energy from Waste and Biomass (EWAB), 1999.

[7] RABOU L P L M, ZWART R W R, VREUGDENHIL B J, et al. Tar in biomass producer gas, the energy research centre of the netherlands (ECN) experience: an enduring challenge[J]. Energy & fuels, 2009, 23(12): 6189-6198. DOI: 10.1021/ef9007032.

[8] SONG K L, ZHANG H, WU Q L, et al. Structure and thermal properties of tar from gasification of agricultural crop residue[J]. Journal of thermal analysis and calorimetry, 2015, 119(1): 27-35. DOI: 10.1007/s10973- 014-4081-z.

[9] STEVENS D J. Hot gas conditioning: recent progress with larger-scale biomass gasification systems[R]. NREL/SR-510-29952. Golden, CO, USA: National Renewable Energy Laboratory, 2001.

[10] TIJMENSEN M J A, FAAIJ A P C, HAMELINCK C N, et al. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification[J]. Biomass and bioenergy, 2002, 23(2): 129-152. DOI: 10.1016/S0961-9534(02)00037-5.

[11] HAN J, KIM H. The reduction and control technology of tar during biomass gasification/pyrolysis: an overview[J]. Renewable and sustainable energy reviews, 2008, 12(2): 397-416. DOI: 10.1016/j.rser.2006.07.015.

[12] ANIS S, ZAINAL Z A. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review[J]. Renewable and sustainable energy reviews, 2011, 15(5): 2355-2377. DOI: 10.1016/j.rser. 2011.02.018.

[13] RICHARDSON Y, BLIN J, JULBE A. A short overview on purification and conditioning of syngas produced by biomass gasification: catalytic strategies, process intensification and new concepts[J]. Progress in energy and combustion science, 2012, 38(6): 765-781. DOI: 10.1016/j.pecs.2011.12.001.

[14] ASADULLAH M. Biomass gasification gas cleaning for downstream applications: a comparative critical review[J]. Renewable and sustainable energy reviews, 2014, 40: 118-132. DOI: 10.1016/j.rser.2014.07.132.

[15] TUOMI S, KURKELA E, SIMELL P, et al. Behaviour of tars on the filter in high temperature filtration of biomass-based gasification gas[J]. Fuel, 2015, 139: 220-231. DOI: 10.1016/j.fuel.2014.08.051.

[16] KASTNER J R, MANI S, JUNEJA A. Catalytic decomposition of tar using iron supported biochar[J]. Fuel processing technology, 2015, 130: 31-37. DOI: 10.1016/j.fuproc.2014.09.038.

[17] YAN K P, LI R N, ZHU T L, et al. A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale[J]. Chemical engineering journal, 2006, 116(2): 139-147. DOI: 10.1016/j.cej.2005.09.030.

[18] 吴祖良, 高翔, 李济吾, 等. 非热平衡等离子体过程苯的降解[J]. 化工学报, 2007, 58(8): 2075-2010. DOI: 10.3321/j.issn:0438-1157.2007.08.032.

[19] 严建华, 戴尚莉, 李晓东, 等. 气液两相滑动弧放电中自由基的光谱研究[J]. 光谱学与光谱分析, 2008, 28(8): 1851-1855. DOI: 10.3964/j.issn.1000-0593.2008.08.037.

[20] 杜长明, 乔良, 王静, 等. 新型滑动弧放电等离子体的特性[J]. 高电压技术, 2010, 36(4): 1016-1020.

[21] 骆仲泱, 王沈兵, 赵磊, 等. 脉冲电晕放电多种污染物协同脱除的研究[J]. 太原理工大学学报, 2010, 41(5): 627-632.

[22] TAO K, OHTA N, LIU G Q, et al. Plasma enhanced catalytic reforming of biomass tar model compound to syngas[J]. Fuel, 2013, 104: 53-57. DOI: 10.1016/j.fuel. 2010.05.044.

[23] CHUN Y N, KIM S C, YOSHIKAWA K. Decomposition of benzene as a surrogate tar in a gliding Arc plasma[J]. Environmental progress & sustainable energy, 2013, 32(3): 837-845. DOI: 10.1002/ep.11663.

[24] YAN K K. Corona plasma generation[D]. Eindhoven, The Netherlands: Eindhoven University of Technology, 2001: 1-15.

[25] NAIR S A, PEMEN A J M, YAN K, et al. Chemical processes in tar removal from biomass derived fuel gas by pulsed corona discharges[J]. Plasma chemistry and plasma processing, 2003, 23(4): 665-680. DOI: 10.1023/A:1025510402107.

[26] PEMEN A J M, NAIR S A, YAN K, et al. Pulsed corona discharges for tar removal from biomass derived fuel gas[J]. Plasmas and polymers, 2003, 8(3): 209-224. DOI: 10.1023/A:1024813306111.

[27] YAN K, VAN HEESCH E J M, PEMEN A J M, et al. From chemical kinetics to streamer corona reactor and voltage pulse generator[J]. Plasma chemistry and plasma processing, 2001, 21(1): 107-137. DOI: 10.1023/A: 1007045529652.

[28] NAIR S A, PEMEN A J M, YAN K, et al. Tar removal from biomass-derived fuel gas by pulsed corona discharges[J]. Fuel processing technology, 2003, 84(1/3): 161-173. DOI: 10.1016/S0378-3820(03)00053-5.

[29] NAIR S A, YAN K, PEMEN A J M, et al. Tar removal from biomass-derived fuel gas by pulsed corona discharges. A chemical kinetic study[J]. Industrial & engineering chemistry research, 2004, 43(7): 1649-1658. DOI: 10.1021/ie034066p.

[30] NAIR S A, YAN K, PEMEN A J M, et al. A high-temperature pulsed corona plasma system for fuel gas cleaning[J]. Journal of electrostatics, 2004, 61(2): 117-127. DOI: 10.1016/j.elstat.2004.02.002.

[31] NAIR S A, YAN K, PEMEN A J M, et al. Tar removal from biomass derived fuel gas by pulsed corona discharges: chemical kinetic study II[J]. Industrial & engineering chemistry research, 2005, 44(6): 1734-1741. DOI: 10.1021/ie049292t.

[32] CHANG J S. Next generation integrated electrostatic gas cleaning systems[J]. Journal of electrostatics, 2003, 57(3/4): 273-291. DOI: 10.1016/S0304-3886(02)00167-5.

[33] WINANDS G J J, YAN K, PEMEN A J M, et al. An industrial streamer corona plasma system for gas cleaning[J]. IEEE transactions on plasma science, 2006, 34(5): 2426-2433. DOI: 10.1109/TPS.2006.881278.

[34] NAIR S A, YAN K, SAFITRI A, et al. Streamer corona plasma for fuel gas cleaning: comparison of energization techniques[J]. Journal of electrostatics, 2005, 63(12): 1105-1114. DOI: 10.1016/j.elstat.2005.02.004.

[35] ZHANG X M, ZHU J B, LI X Y, et al. Characteristics of styrene removal with an AC/DC streamer corona plasma system[J]. IEEE transactions on plasma science, 2011, 39(6): 1482-1488. DOI: 10.1109/TPS.2011.2128351.

[36] SIMEONE E, NACKEN M, HAAG W, et al. Filtration performance at high temperatures and analysis of ceramic filter elements during biomass gasification[J]. Biomass and bioenergy, 2011, 35(S1): S87-S104. DOI: 10.1016/j.biombioe.2011.04.036.

[37] HEIDENREICH S. Hot gas filtration-a review[J]. Fuel, 2013, 104: 83-94. DOI: 10.1016/j.fuel.2012.07.059.

[38] 宁成, 李劲, 周文俊, 等. 高压正脉冲电晕脱硫脱硝和除尘相互影响的研究[J]. 中国环境科学, 1994, 14(2): 123-127.

[39] 吴彦, 王荣毅, 王宁会. 脉冲电压下粒子荷电的实验研究[J]. 大连理工大学学报, 1995, 35(3): 309-311.

[40] 胡小吐, 姜学东, 朱天乐, 等. 流光放电等离子体氨法烟气脱硫工艺[J]. 化工学报, 2007, 58(4): 1001-1006. DOI: 10.3321/j.issn:0438-1157.2007.04.034.

[41] TAMUS A, IVANCSY T, KISS I, et al. Improved modelling of impulse mode ESP energization[J]. Journal of physics: conference series, 2008, 142(1): 012034. DOI: 10.1088/1742-6596/142/1/012034.

[42] XU F, LUO Z Y, BO W, et al. Experimental investigation on charging characteristics and penetration efficiency of PM2.5 emitted from coal combustion enhanced by positive corona pulsed ESP[J]. Journal of electrostatics, 2009, 67(5): 799-806. DOI: 10.1016/j.elstat.2009.06.002

[43] 姜雨泽, 吴彦. 脉冲放电烟气脱硫脱硝与除尘相结合工艺研究[J]. 华东电力, 2005, 33(8): 51-53. DOI: 10.3969/j.issn.1001-9529.2005.08.013.

Outlines

/