Welcome to visit Advances in New and Renewable Energy!

Key Issues for Triaxial Test of Hydrate-Bearing Sediment

  • LI Yan-long ,
  • LIU Chang-ling ,
  • LIU Le-le ,
  • HUANG Meng ,
  • SUN Jian-ye ,
  • LI Cheng-feng
Expand
  • 1. Key Laboratory of Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China;
    3. The Key Laboratory of Gas Hydrate, Ministry of Land and Resources, Qingdao Institute of Marine Geology, Qingdao 266071, Shandong, China;
    4. Ocean University of China, Qingdao 266100, Shandong, China

Received date: 2016-05-03

  Revised date: 2016-05-28

  Online published: 2016-08-30

Abstract

Triaxial test is one of the effective and direct ways to obtain strength parameters of hydrate-bearing sediments. Current researches have reached consensuses on some scientific issues, but there are still many critical problems left to be discussed. Extensive literature investigation shows that different research results are profoundly different, empirical models can’t be used universally because of lacking of unified testing standard or method. There is still a gap between experimental results and mineral conditions. Difference of sample preparation method, particle size distribution, degree of consolidation, test temperature, shearing rate, gas type, hydrate saturation decision method and sample size are critical factors lead to the above problems. Thus, in order to strengthen guiding significance of test result, detailed experimental conditions and test method should be announced when publishing research papers. What’s more, establishing a unified testing standard and method is extremely urgent for triaxial test of hydrate-bearing sediment.

Cite this article

LI Yan-long , LIU Chang-ling , LIU Le-le , HUANG Meng , SUN Jian-ye , LI Cheng-feng . Key Issues for Triaxial Test of Hydrate-Bearing Sediment[J]. Advances in New and Renewable Energy, 2016 , 4(4) : 279 -285 . DOI: 10.3969/j.issn.2095-560X.2016.04.004

References

[1] 张洪涛, 张海启, 祝有海. 中国天然气水合物调查研究现状及其进展[J]. 中国地质, 2007, 34(6): 953-961. DOI: 10.3969/j.issn.1000-3657.2007.06.001.

[2] 吴能友, 张海啟, 杨胜雄, 等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业, 2007, 27(9): 1-6. DOI: 10.3321/j.issn:1000-0976.2007.09.001.

[3] WINTERS W J, WAITE W F, MASON D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of petroleum science and engineering, 2007, 56(1/3): 127-135. DOI: 10.1016/ j.petrol.2006.02.003.

[4] WINTERS W J, WILCOX-CLINE R W, LONG P, et al. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems [J]. Marine and petroleum geology, 2014, 58: 139-167. DOI: 10.1016/ j.marpetgeo.2014.07.024.

[5] HYODO M, NAKATA Y, YOSHIMOTO, et al. Shear behavior of methane hydrate-bearing sand[C]// Proceedings of the 17th International Offshore and Polar Engineering Conference. Lisbon, Portugal: International Society of Offshore and Polar Engineers, 2007: 1326-1333.

[6] HYODO M, LI Y H, YONEDA J, et al. Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments [J]. Marine and petroleum geology, 2013, 51: 52-62. DOI: 10.1016/j.marpetgeo.2013.11.015.

[7] MASUI A, HANEDA H, OGATA Y, et al. Mechanical properties of sandy sediment containing marine gas hydrates in deep sea offshore Japan[C]//Proceedings of the 17th International Offshore and Polar Engineering Conference. Lisbon, Portugal: International Society of Offshore and Polar Engineers, 2007: 53-56.

[8] YONEDA J, MASUI A, KONNO Y, et al. Mechanical behavior of hydrate-bearing pressure-core sediments visualized under triaxial compression [J]. Marine and petroleum geology, 2015, 66: 451-459. DOI: 10.1016/ j.marpetgeo.2015.02.028.

[9] MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compressive properties of artificial methane- hydrate-bearing sediment [J]. Journal of geophysical research: solid earth, 2011, 116(B6): B06102. DOI: 10.1029/2010JB008049.

[10] MIYAZAKI K, TENMA N, AOKI K, et al. Loading-rate dependence of triaxial compressive strength of artificial methane-hydrate-bearing sediment containing fine fraction[C]//Proceedings of the 21th International Offshore and Polar Engineering Conference. Rhodes, Greece: International Society of Offshore and Polar Engineers, 2012.

[11] PRIEST J A, CLAYTON C R I, REES E V L. Potential impact of gas hydrate and its dissociation on the strength of host sediment in the Krishna-Godavari Basin[J]. Marine and petroleum geology, 2014, 58: 187-198. DOI: 10.1016/j.marpetgeo.2014.05.008.

[12] YUN T S, SANTAMARINA J C, RUPPEL C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate [J]. Journal of geophysical research: solid earth, 2007, 112 (B4): B04106. DOI: 10.1029/2006JB004484.

[13] 鲁晓兵, 王丽, 王淑云, 等. 四氢呋喃水合物沉积物力学性质研究[C]//第十三届中国海洋(岸)工程学术讨论会论文集. 南京: 中国海洋工程学会, 2007: 681-684.

[14] 张旭辉, 鲁晓兵, 王淑云, 等. 四氢呋喃水合物沉积物静动力学性质试验研究[J]. 岩土力学, 2011, 32(S1): 303-308.

[15] 张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074. DOI: 10.3969/j.issn.1000-7598.2010.10.007.

[16] 颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234-1240.

[17] 颜荣涛, 韦昌富, 傅鑫晖, 等. 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报, 2013, 32(S2): 4115-4122.

[18] 魏厚振, 颜荣涛, 陈盼, 等. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. 岩土力学, 2011, 32(S2): 198-203.

[19] 李洋辉, 宋永臣, 刘卫国, 等. 温度和应变速率对水合物沉积物强度影响试验研究[J]. 天然气勘探与开发, 2012, 35(1): 50-53. DOI: 10.3969/j.issn.1673-3177.2012. 01.011.

[20] 李洋辉, 宋永臣, 于锋, 等. 围压对含水合物沉积物力学特性的影响[J]. 石油勘探与开发, 2011, 38(5): 637-640.

[21] 于锋, 宋永臣, 李洋辉, 等. 含冰甲烷水合物的应力与应变关系[J]. 石油学报, 2011, 32(4): 687-692. DOI: 10.7623/syxb201104019.

[22] 李令东, 程远方, 孙晓杰, 等. 水合物沉积物试验岩样制备及力学性质研究[J]. 中国石油大学学报(自然科学版), 2012, 36(4): 97-101. DOI: 10.3969/j.issn.1673- 5005.2012.04.018.

[23] 孙晓杰, 程远方, 李令东, 等. 天然气水合物岩样三轴力学试验研究[J]. 石油钻探技术, 2012, 40(4): 52-57. DOI: 10.3969/j.issn.1001-0890.2012.04.011.

[24] 石要红, 张旭辉, 鲁晓兵, 等. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 2015, 47(3): 521-528. DOI: 10.6052/0459-1879-14-424.

[25] 刘文涛, 石要红, 张旭辉, 等. 西沙海槽东部海底浅表层土工程地质特性及水合物细粒土力学性质试验[J]. 海洋地质与第四纪地质, 2014, 34(3): 39-47.

[26] 刘芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565-1572.

[27] 孙中明, 张剑, 刘昌岭, 等. 沉积物中甲烷水合物饱和度测定及其力学特性研究[J]. 实验力学, 2013, 28(6): 747-754. DOI: 10.7520/1001-4888-12-196.

[28] 陈镠芬, 朱俊高, 殷建华. 三轴试样高径比对试验影响的颗粒流数值模拟[J]. 中南大学学报(自然科学版), 2015, 46(7): 2643-2649. DOI: 10.11817/j.issn.1672- 7207.2015.07.035.

[29] 沙曼, 赵成刚, 康凯. 试样尺寸及制样粒径大小对粗粒土三轴试验抗剪强度的影响[J]. 北京交通大学学报, 2014, 38(4): 133-136. DOI: 10.11860/j.issn.1673-0291- 2014.04.023.

[30] 高霞, 刘文新, 高橙, 等. 含瓦斯水合物煤体强度特性三轴试验研究[J]. 煤炭学报, 2015, 40(12): 2829-2835. DOI: 10.13225/j.cnki.jccs.2014.1578.

[31] 张保勇, 高橙, 高霞, 等. 围压对含瓦斯水合物煤体应力应变关系的影响[J]. 黑龙江科技大学学报, 2015, 25(2): 137-142. DOI: 10.3969/j.issn.2095-7262.2015.02. 005.

[32] 杨期君, 赵春风. 水合物沉积物力学性质的三维离散元分析[J]. 岩土力学, 2014, 35(1): 255-262.



 
Outlines

/