Welcome to visit Advances in New and Renewable Energy!

Research Progress in Anodes of Asymmetric Supercapacitors

  • CHENG Xin-yu ,
  • YU Ming-hao ,
  • LU Xi-hong
Expand
  • MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China

Received date: 2016-03-30

  Revised date: 2016-04-20

  Online published: 2016-08-30

Abstract

Supercapacitors, which serve as a kind of novel energy storage devices, have aroused great attention all over the world. Among them, asymmetric supercapacitors present substantially higher energy densities than those of symmetric ones. However, the imbalanced development of supercapacitor anodes can hardly match that of cathodes, which severely limits the performance of the whole device. In this review, the recent research progress is briefly summarized on anodes of asymmetric supercapacitors categorizing into carbon based, metal oxides based, metal nitrides based, and metal sulfides based electrodes. Besides, the electrochemical performance of the ASC devices assembled with those anodes is discussed. Finally, the future trend and challenges of asymmetric supercapacitors are also promoted.

Cite this article

CHENG Xin-yu , YU Ming-hao , LU Xi-hong . Research Progress in Anodes of Asymmetric Supercapacitors[J]. Advances in New and Renewable Energy, 2016 , 4(4) : 286 -296 . DOI: 10.3969/j.issn.2095-560X.2016.04.005

References

[1] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical reviews, 2004, 104(10): 4245-4270. DOI: 10.1021/cr020730k.

[2] MILLER J R, SIMON P. Materials science. Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651-652. DOI: 10.1126/science. 1158736.

[3] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature materials, 2008, 7(11): 845-854. DOI: 10.1038/nmat2297.

[4] CAO X H, YIN Z Y, ZHANG H. Three-dimensional graphene materials: preparation, structures and application in supercapacitors[J]. Energy & environmental science, 2014, 7(6): 1850-1865. DOI: 10.1039/C4EE00050A.

[5] LU X H, YU M H, WANG G M, et al. Flexible solid-state supercapacitors: design, fabrication and applications[J]. Energy & environmental science, 2014, 7(7): 2160-2181. DOI: 10.1039/C4EE00960F.

[6] WANG G P, ZHANG L, ZHANG J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical society reviews, 2012, 41(2): 797-828. DOI: 10.1039/C1CS15060J.

[7] AKINWOLEMIWA B, PENG C, CHEN G Z. Redox electrolytes in supercapacitors[J]. Journal of the electrochemical society, 2015, 162(5): A5054-A5059. DOI: 10.1149/2.0111505jes.

[8] XIAO J W, WAN L, YANG S H, et al. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors[J]. Nano letters, 2014, 14(2): 831-838. DOI: 10.1021/nl404199v.

[9] JIANG H, LEE P S, LI C Z. 3D carbon based nanostructures for advanced supercapacitors[J]. Energy & environmental science, 2013, 6(1): 41-53. DOI: 10.1039/C2EE23284G.

[10] YU M H, QIU W T, WANG F X, et al. Three dimensional architectures: design, assembly and application in electrochemical capacitors[J]. Journal of materials chemistry A, 2015, 3(31): 15792-15823. DOI: 10.1039/C5TA02743H.

[11] JIANG H, MA J, LI C Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes[J]. Advanced materials, 2012, 24(30): 4197-4202. DOI: 10.1002/adma.201104942.

[12] COMPTON O C, DIKIN D A, PUTZ K W, et al. Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper[J]. Advanced materials, 2010, 22(8): 892-896. DOI: 10.1002/adma.200902069.

[13] ZHAO Y, HU C G, HU Y, et al. A Versatile, ultralight, nitrogen-doped graphene framework[J]. Angewandte chemie, 2012, 124(45): 11533-11537. DOI: 10.1002/ange. 201206554.

[14] WANG X R, LI X L, ZHANG L, et al. N-doping of graphene through electrothermal reactions with ammonia[J]. Science, 2009, 324(5928): 768-771. DOI: 10.1126/science.1170335.

[15] WANG Z L, ZHU Z L, QIU J H, et al. High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core-shell nanorods//specially reduced graphene oxide[J]. Journal of materials chemistry C, 2014, 2(7): 1331-1336. DOI: 10.1039/C3TC31476F.

[16] QIU Y C, ZHAO Y H, YANG X W, et al. Three-dimensional metal•oxide nanocone arrays for high-performance electrochemical pseudocapacitors[J]. Nanoscale, 2014, 6(7): 3626-3631. DOI: 10.1039/ C3NR06675D.

[17] CHEN W, XIA C, ALSHAREEF H N. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors[J]. ACS nano, 2014, 8(9): 9531-9541. DOI: 10.1021/nn503814y.

[18] GAO H C, XIAO F, CHING C B, et al. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2[J]. ACS applied materials & interfaces, 2012, 4(5): 2801-2810. DOI: 10.1021/am300455d.

[19] WU S S, CHEN W F, YAN L F. Fabrication of a 3D MnO2•graphene hydrogel for high-performance asymmetric supercapacitors[J]. Journal of materials chemistry A, 2014, 2(8): 2765-2772. DOI: 10.1039/ c3ta14387b.

[20] SHI S, XU C J, YANG C, et al. Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property[J]. Scientific reports, 2013, 3: 2598. DOI: 10.1038/srep02598.

[21] YU M H, WANG W, LI C, et al. Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors[J]. NPG Asia materials, 2014, 6(9): e129. DOI: 10.1038/am.2014.78.

[22] LUAN F, WANG G M, LING Y C, et al. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode[J]. Nanoscale, 2013, 5(17): 7984-7990. DOI: 10.1039/C3NR02710D.

[23] ZHAI T, WANG F X, YU M H, et al. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors[J]. Nanoscale, 2013, 5(15): 6790-6796. DOI: 10.1039/C3NR01589K.

[24] CHOI B G, YANG M, HONG W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS nano, 2012, 6(5): 4020-4028. DOI: 10.1021/nn3003345.

[25] LU X H, YU M H, WANG G M, et al. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors[J]. Advanced materials, 2013, 25(2): 267-272. DOI: 10.1002/adma.201203410.

[26] YANG C Z, ZHOU M, XU Q. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors[J]. Physical chemistry chemical physics, 2013, 15(45): 19730-19740. DOI: 10.1039/C3CP53504E.

[27] LEI Z B, ZHANG J T, ZHAO X S. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes[J]. Journal of materials chemistry, 2012, 22(1): 153-160. DOI: 10.1039/C1JM13872C.

[28] WANG G M, WANG H Y, LU X H, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Advanced materials, 2014, 26(17): 2676-2682, 2615. DOI: 10.1002/adma.201304756.

[29] WANG W, LIU W Y, ZENG Y X, et al. A Novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Advanced materials, 2015, 27(23): 3572-3578. DOI: 10.1002/adma.201500707.

[30] YANG P H, DING Y, LIN Z Y, et al. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes[J]. Nano letters, 2014, 14(2): 731-736. DOI: 10.1021/nl404008e.

[31] LU X H, ZENG Y X, YU M H, et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors[J]. Advanced materials, 2014, 26(19): 3148-3155. DOI: 10.1002/adma.201305851.

[32] ZENG Y X, HAN Y, ZHAO Y T, et al. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors[J]. Advanced energy materials, 2015, 5(12): 1402176. DOI: 10.1002/aenm.201402176.

[33] CHANG J, JIN M H, YAO F, et al. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene•MoO3 nanosheets with high energy density[J]. Advanced functional materials, 2013, 23(40): 5074-5083. DOI: 10.1002/adfm201301851.

[34] XIAO X, DING T P, YUAN L Y, et al. WO3-x/MoO3-xCore/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors[J]. Advanced energy materials, 2012, 2(11): 1328-1332. DOI: 10.1002/aenm.201200380.

[35] TANG W, LIU L L, TIAN S, et al. Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material[J]. Chemical communications, 2011, 47(36): 10058-10060. DOI: 10.1039/C1CC13474D.

[36] LIU Y, ZHANG B H, XIAO S Y, et al. A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance[J]. Electrochimica acta, 2014, 116: 512-517. DOI: 10.1016/j.electacta.2013.11.077.

[37] ZHAI T, LU X H, LING Y C, et al. A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13-x[J]. Advanced materials, 2014, 26(33): 5869-5875. DOI: 10.1002/adma.201402041.

[38] BALOGUN M S, QIU W T, WANG W, et al. Recent advances in metal nitrides as high-performance electrode materials for energy storage devices[J]. Journal of materials chemistry A, 2015, 3(4): 1364-1387. DOI: 10.1039/C4TA05565A.

[39] LU X H, LIU T Y, ZHAI T, et al. Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell[J]. Advanced energy materials, 2014, 4(4): 1300994. DOI: 10.1002/aenm.201300994.

[40] GAO Z H, ZHANG H, CAO G P, et al. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor[J]. Electrochimica acta, 2013, 87: 375-380. DOI: 10.1016/j.electacta.2012.09.075.

[41] WANG R T, YAN X B, LANG J W, et al. A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials[J]. Journal of materials chemistry A, 2014, 2(32): 12724-12732. DOI: 10.1039/C4TA01296H.

[42] DONG S M, CHEN X, GU L, et al. TiN/VN composites with core/shell structure for supercapacitors[J]. Materials research bulletin, 2011, 46(6): 835-839. DOI: 10.1016/j.materresbull.2011.02.028.

[43] ZHOU X H, SHANG C Q, GU L, et al. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core- shell structures for high-performance supercapacitors[J]. ACS applied materials & interfaces, 2011, 3(8): 3058-3063. DOI: 10.1021/am200564b.

[44] ZHAI T, XIE S L, YU M H, et al. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors[J]. Nano energy, 2014, 8: 255-263. DOI: 10.1016/j.nanoen.2014.06.013.

[45] XU F, FAHMI A, ZHAO Y M, et al. Patterned growth of tungsten oxide and tungsten oxynitride nanorods from Au-coated W foil[J]. Nanoscale, 2012, 4(22): 7031-7037. DOI: 10.1039/C2NR32169F.

[46] ZHAO Y M, HU W B, XIA Y D, et al. Preparation and characterization of tungsten oxynitride nanowires[J]. Journal of materials chemistry, 2007, 17(41): 4436-4440. DOI: 10.1039/B709486H.

[47] KARTACHOVA O, CHEN Y, JONES R, et al. Evolution of the electrochemical capacitance of transition metal oxynitrides with time: the effect of ageing and passivation[J]. Journal of materials chemistry A, 2014, 2(32): 12940-12951. DOI: 10.1039/C4TA00220B.

[48] KARTACHOVA O, GLUSHENKOV A M, CHEN Y H, et al. Bimetallic molybdenum tungsten oxynitride: structure and electrochemical properties[J]. Journal of materials chemistry A, 2013, 1(27): 7889-7895. DOI: 10.1039/C3TA10836H.

[49] YU M H, HAN Y, CHENG X Y, et al. Holey tungsten oxynitride nanowires: novel anodes efficiently integrate microbial chemical energy conversion and electrochemical energy storage[J]. Advanced materials, 2015, 27(19): 3085-3091. DOI: 10.1002/adma.201500493.

[50] GHOSH D, DAS C K. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor[J]. ACS applied materials & interfaces, 2015, 7(2): 1122-1131. DOI: 10.1021/ am506738y.

[51] ZHAI T, LU X H, WANG H Y, et al. An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg[J]. Nano letters, 2015, 15(5): 3189-3194. DOI: 10.1021/acs.nanolett. 5b00321.

Outlines

/