Advances in New and Renewable Energy >
Research Progress on Lithium Titanate as Anode Material in Lithium-Ion Battery
Received date: 2016-04-28
Revised date: 2016-06-21
Online published: 2016-08-30
Spinel-type lithium titanate (Li4Ti5O12) is considered as a promising anode material for lithium-ion batteries due to its structural stability and high safety. In this work, the typical synthetic methods of Li4Ti5O12 reported in literatures and their advantages and disadvantages were analyzed and summarized from the practical use point of view. The development trend of Li4Ti5O12 was also predicted.
LIAN Jiang-ping , LI Qian-qian , WEN Qiao-e , MA Shu-liang . Research Progress on Lithium Titanate as Anode Material in Lithium-Ion Battery[J]. Advances in New and Renewable Energy, 2016 , 4(4) : 297 -304 . DOI: 10.3969/j.issn.2095-560X.2016.04.006
[1] DUNN B, KAMATH H, TARASCON J M, et al. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. DOI: 10.1126/science.1212741.
[2] CROGUENNEC L, PALACIN M R. Recent achievements on inorganic electrode materials for lithium-ion batteries[J]. Journal of the American chemical society, 2015, 137(9): 3140-3156. DOI: 10.1021/ja507828x.
[3] REDDY M V, RAO G V S, CHOWDARI B V R. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical reviews, 2013, 113(7): 5364-5457. DOI: 10.1021/cr3001884.
[4] YI T F, YANG S Y, TAO M, et al. Synthesis and application of a novel Li4Ti5O12 composite as anode material with enhanced fast charge-discharge performance for lithium-ion battery[J]. Electrochimica acta, 2014, 134: 377-383. DOI: 10.1016/j.electacta.2014.04.179.
[5] ZAGHIB K, DONTIGNY M, GUERFI A, et al. Safe and fast-charging Li-ion battery with long shelf life for power applications[J]. Journal of power sources, 2011, 196(8): 3949-3954. DOI: 10.1016/j.jpowsour.2010.11.093.
[6] RONCI F, REALE P, SCROSATI B, et al. High-resolution in-situ structural measurements of the Li4/3Ti5/3O4 “Zero-Strain” insertion material[J]. The journal of physical chemistry B, 2002, 106(12): 3082-3086. DOI: 10.1021/jp013240p.
[7] OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[Lil/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of the electrochemical society, 1995, 142(5): 1431-1435. DOI: 10.1149/1.2048592.
[8] SPITLER M T, PROCHAZKA J. Process for making lithium titanate: US, 6890510B2[P]. 2005-10-05.
[9] ZHOU T P, FENG X Y, GUO X, et al. Solid-state synthesis and electrochemical performance of Ce-doped Li4Ti5O12 anode materials for lithium-ion batteries[J]. Electrochimica acta, 2015, 174: 369-375. DOI: 10.1016/j.electacta.2015.06.021.
[10] ZHU Y R, YUAN J, ZHU M, et al. Improved electrochemical properties of Li4Ti5O12–Li0.33La0.56TiO3 composite anodes prepared by a solid-state synthesis[J]. Journal of alloys and compounds, 2015, 646: 612-619. DOI: 10.1016/j.jallcom.2015.05.239.
[11] SHEN Y B, SØNDERGAARD M, CHRISTENSEN M, et al. Solid state formation mechanism of Li4Ti5O12 from an anatase TiO2 source[J]. Chemistry of materials, 2014, 26(12): 3679-3686. DOI: 10.1021/cm500934z.
[12] WANG Z G, WANG Z X, PENG W J, et al. An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/Li4Ti5O12 full-cell[J]. Ceramics international, 2014, 40(7): 10053-10059. DOI: 10.1016/j.ceramint.2014.04.011.
[13] SNOKE S, JAIN U, SAHU A K, et al. Thermogravimetric analysis and kinetic study of formation of lithium titanate by solid state route[J]. Journal of nuclear materials, 2015, 457: 88-93. DOI: 10.1016/j.jnucmat.2014.11.016.
[14] YAO W J, ZHUANG W, JI X Y, et al. Solid-state synthesis of Li4Ti5O12 whiskers from TiO2-B[J]. Materials research bulletin, 2016, 75: 204-210. DOI: 10.1016/j.materresbull.2015.11.057.
[15] ZHANG Q Y, LIU Y, LU H S, et al. Ce3+-doped Li4Ti5O12 with CeO2 surface modification by a sol-gel method for high-performance lithium-ion batteries[J]. Electrochimica acta, 2016, 189: 147-157. DOI: 10.1016/j.electacta.2015.12.103.
[16] MAHMOUD A, AMARILLA J M, SAADOUNE I. Effect of thermal treatment used in the sol–gel synthesis of Li4Ti5O12 spinel on its electrochemical properties as anode for lithium ion batteries[J] Electrochimica acta, 2015, 163: 213-222. DOI: 10.1016/j.electacta.2015.02.111.
[17] LUO G E, HE J R, SONG X J, et al. Bamboo carbon assisted sol–gel synthesis of Li4Ti5O12 anode material with enhanced electrochemical activity for lithium ion battery[J] Journal of alloys and compounds, 2015, 621: 268-273. DOI: 10.1016/j.jallcom.2014.09.200.
[18] MOSA J, VÉLEZ J F, REINOSA J J, et al. Li4Ti5O12 thin-film electrodes by sol–gel for lithium-ion microbatteries[J] Journal of power sources, 2013, 244: 482-487. DOI: 10.1016/j.jpowsour.2012.11.037.
[19] QIU C X, YUAN Z Z, LIU L, et al. Sol–gel preparation and electrochemical properties of La-doped Li4Ti5O12 anode material for lithium-ion battery[J] Journal of solid state electrochemistry, 2013, 17(3): 841-847. DOI: 10.1007/s10008-012-1930-1.
[20] HAO Y J, LAI Q Y, XU Z H, et al. Synthesis by TEA sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery[J]. Solid state ionics, 2005, 176(13-14): 1201-1206. DOI: 10.1016/j.ssi.2005.02.010.
[21] KUO Y C, LIN J Y. One-pot sol-gel synthesis of Li4Ti5O12/C anode materials for high-performance Li-ion batteries[J]. Electrochimica acta, 2014, 142: 43-50. DOI: 10.1016/j.electacta.2014.07.103.
[22] CHANG C M, CHEN Y C, MA Y L, et al. Sol–gel synthesis of low carbon content and low surface area Li4Ti5O12/carbon black composites as high-rate anode materials for lithium ion batteries[J]. RSC advances, 2015, 5(91): 74381-74390. DOI: 10.1039/C5RA11586H.
[23] ZHANG Y, ZHU Y J, GU Y X, et al. Solvothermal synthsis of nano-sized Li4Ti5O12 particles as anode material for lithium ion batteries[J]. Advanced materials research, 2015, 1120-1121: 281-285. DOI: 10.4028/www.scientific.net/AMR.1120-1121.281.
[24] HUI Y N, CAO L Y, XU Z W, et al. Mesoporous Li4Ti5O12 nanoparticles synthesized by a microwave- assisted hydrothermal method for high rate lithium-ion batteries[J]. Journal of electroanalytical chemistry, 2016, 763: 45-50. DOI: 10.1016/j.jelechem.2015.12.042.
[25] ZHU J P, DUAN R, ZHANG Y Y, et al. A facial solvothermal reduction route for the production of Li4Ti5O12/graphene composites with enhanced electrochemical performance[J]. Ceramics international, 2016, 42(1): 334-340. DOI: 10.1016/j.ceramint.2015. 08.115.
[26] RAJAGOPALAN B, OH E S, CHUNG J S. The effect of diethylenetriamine on the solvothermal reactions of polyethyleneimine-graphene oxide/lithium titanate nanocomposites for lithium battery anode[J]. Journal of power sources, 2015, 275: 702-711. DOI: 10.1016/ j.jpowsour.2014.11.069.
[27] RAHMAN M M, WANG J Z, HASSSAN M F, et al. Basic molten salt process-a new route for synthesis of nanocrystalline Li4Ti5O12-TiO2 anode material for Li-ion batteries using eutectic mixture of LiNO3-LiOH- Li2O2[J]. Journal of power source, 2010, 195(13): 4297-4303. DOI: 10.1016/j.jpowsour.2010.01.073.
[28] QIAO Y, HU X L, LIU Y, et al. Li4Ti5O12 nanocrystallites for high-rate lithium-ion batteries synthesized by a rapid microwave-assisted solid-state process[J]. Electrochimica acta, 2012, 63: 118-123. DOI: 10.1016/j.electacta.2011.12.064.
[29] KARHUNENA T, VÄLIKANGAS J, TORVELA T, et al. Effect of doping and crystallite size on the electrochemical performance of Li4Ti5O12[J]. Journal of alloys and compounds, 2016, 659: 132-137. DOI: 10.1016/j.jallcom.2015.10.125.
[30] YUE J P, SUCHOMSKI C, BREZESINSKI T, et al. Polymer-templated mesoporous Li4Ti5O12 as a high-rate and long-life anode material for rechargeable li-ion batteries[J]. ChemNanoMat, 2015, 1(6): 415-421. DOI: 10.1002/cnma.201500078.
[31] LI X, YANG K, GAO F, et al. Electrospinning synthesis of spinel Li4Ti5O12 and its characterization[C]//IOP Conference Series Materials Science and Engineering. Beijing, China: IOP Publishing Ltd, 2015. DOI: 10.1088/1757-899X/87/1/012098.
[32] WANG Y Q, GU L, GUO Y G, et al. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery[J]. Journal of the American chemical society, 2012, 134(18): 7874-7879. DOI: 10.1021/ ja301266w.
[33] WILKENING M, AMADE R, IWANIAKA W, et al. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12–a comparison of results from solid state NMR and impedance spectroscopy[J]. Physical chemistry chemical physics, 2007, 9(10): 1239-1246. DOI: 10.1039/B616269J.
[34] POHJALAINEN E, KALLIOINEN J, KALLIO T. Comparative study of carbon free and carbon containing Li4Ti5O12 electrodes[J] Journal of power sources, 2015, 279: 481-486. DOI: 10.1016/j.jpowsour.2014.12.111.
[35] ZHANG Y L, LIN Z J, HU X B, et al. One-step solid-state synthesis of Li4Ti5O12/C with low in situ carbon content and high rate cycling performance[J]. Journal of solid state electrochemistry, 2016, 20(1): 215-223. DOI: 10.1007/s10008-015-3019-0.
[36] SUN L, KONG W B, WU H C, et al. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries[J] Nanoscale, 2016, 8: 617-625. DOI: 10.1039/C5NR06406F.
[37] LI W T, YUAN T, ZHANG W M, et al. Influence of lithium precursors and calcination atmospheres on graphene sheets-modified nano-Li4Ti5O12 anode material[J]. Journal of power sources, 2015, 285: 51-62. DOI: 10.1016/j.jpowsour.2015.02.021.
[38] DING K Q, ZHAO J, ZHOU J M, et al. Preparation and characterization of dy-doped lithium titanate ( Li4Ti5O12)[J]. International journal of electrochemica science, 2016, 11: 446-458.
[39] ERDAS A, OZCAN S, NALCI D, et al. Novel Ag/Li4Ti5O12 binary composite anode electrodes for high capacity Li-ion batteries[J] Surface and coatings technology, 2015, 271: 136-140. DOI: 10.1016/ j.surfcoat.2014.12.067.
[40] ZHANG Y Y, ZHANG C M, LIN Y, et al. Influence of Sc3+ doping in B-site on electrochemical performance of Li4Ti5O12 anode materials for lithium-ion battery[J] Journal of power sources, 2014, 250: 50-57. DOI: 10.1016/j.jpowsour.2013.10.137.
[41] YANG T F, YANG S Y, LI X Y, et al. Sub-micrometric Li4−xNaxTi5O12 (0≤x≤0.2) spinel as anode material exhibiting high rate capability[J] Journal of power sources, 2014, 246: 505-511. DOI: 10.1016/j.jpowsour. 2013.08.005.
[42] WANG W, JIANG B, XIONG W Y, et al. A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries[J]. Electrochimica acta, 2013, 114: 198-204. DOI: 10.1016/j.electacta.2013.10.035.
[43] YI T F, SHU J, ZHU Y R, et al. High-performance Li4Ti5−xVxO12 (0≤x≤0.3) as an anode material for secondary lithium-ion battery[J]. Electrochimica acta, 2009, 54(28): 7464-7470. DOI: 10.1016/j.electacta. 2009.07.082.
[44] CHENG C L, LIU H J, XUE X, et al. Highly dispersed copper nanoparticle modified nano Li4Ti5O12 with high rate performance for lithium ion battery[J]. Electrochimica acta, 2014, 120: 226-230. DOI: 10.1016/j.electacta.2013.12.049.
[45] LI S Y, CHEN M, XUE Y, et al. Electrochemical properties of citric acid-assisted combustion synthesis of Li4Ti5O12 adopting Cr by the solid-state reaction process[J]. Ionics, 2015, 21(6): 1545-1551. DOI: 10.1007/s11581-014-1329-3.
[46] SHEN L F, YUAN C Z, LUO H J, et al. Novel template-free solvothermal synthesis of mesoporous Li4Ti5O12-C microspheres for high power lithium ion batteries[J]. Journal of materials chemistry, 2011, 21(38): 14414-14416. DOI: 10.1039/C1JM12324F.
[47] TANG Y F, YANG L, FANG S H, et al. Li4Ti5O12 Hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries[J]. Electrochimica acta, 2009, 54(26): 6244-6249. DOI: 10.1016/j.electacta.2009.05.092.
[48] TANG Y F, YANG L, QIU Z, et al. Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets[J]. Electrochemistry communications, 2008, 10(10): 1513-1516. DOI: 10.1016/j.elecom.2008.07.049.
[49] CHEN J Z, YANG L, FANG S H, et al. Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries[J]. Electrochimica acta, 2010, 55(22): 6596-6600. DOI: 10.1016/j.electacta.2010.06.015.
[50] ZHANG X Y, XU H R, ZHAO Y Y, et al. A facile one-step spray pyrolysis method to synthesize spherical Li4Ti5O12 for lithium-ion battery[J]. Materials letters, 2014, 129: 101-103. DOI: 10.1016/j.matlet.2014.05.052.
[51] HARIDAS A K, SHARMA C S, RAO T N. Electrochemical performance of lithium titanate submicron rods synthesized by sol-gel/electrospinning[J]. Electroanalysis, 2014, 26(11): 2315-2319. DOI: 10.1002/elan.201400233.
[52] HUI Y N, CAO L Y, HUANG J F, et al. Synthesis of Li4Ti5O12 nanoclusters for lithium-ion batteries with excellent electrochemical performances[J]. Journal of electroanalytical chemistry, 2016, 763: 32-36. DOI: 10.1016/j.jelechem.2015.12.033.
[53] SHEN C M, ZHANG X G, ZHOU Y K, et al. Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method[J]. Materials chemistry and physics, 2002, 78(2): 437-441. DOI: 10.1016/S0254- 0584(02)00225-0.
[54] CHEN C C, HUANG Y N, ZHANG H, et al. Small amount of reduce graphene oxide modified Li4Ti5O12 nanoparticles for ultrafast high-power lithium ion battery[J]. Journal of power souce, 2015, 278: 693-702. DOI: 10.1016/j.jpowsour.2014.12.075.
[55] WANG Y Y, HAO Y J, LAI Q Y, et al. A new composite material Li4Ti5O12–SnO2 for lithium-ion batteries[J]. Ionics, 2008, 14(1): 85-88. DOI: 10.1007/ s11581-007-0156-1.
/
〈 |
|
〉 |