Advances in New and Renewable Energy >
Experimental Investigation on Thermal Management of Cylindrical Lithium-Ion Battery
Received date: 2016-06-14
Revised date: 2016-06-28
Online published: 2016-08-30
It is necessary to implement effective thermal management strategies to keep the Li-ion batteries work at a desirable temperature or within a temperature range, and thus to guarantee its high efficiency, reliable safety and long lifetime. In this paper, a prismatic metal shell was designed for the cylindrical Li-ion batteries to enhance the heat dissipation and facilitate the heat exchange between neighboring batteries. Experiments were carried out to compare the temperature rise of a single battery or a small group of parallel-connected batteries with or without metal shells assembled under natural or forced air convective cooling conditions at various discharge rates. It was found that heat dissipation of the shelled battery (or small group) was improved greatly. In addition, batteries in a small parallel-connected group were designed to discharge at different rates to record the temperature variation. The result showed that the maximum temperature difference between shelled single cells could be reduced by more than 10oC under natural convection cooling condition.
Key words: lithium-ion battery; thermal management; metal shell; heat dissipation
LI Zhi-bin, CEN Ji-wen, PENG Peng, JIANG Fang-ming . Experimental Investigation on Thermal Management of Cylindrical Lithium-Ion Battery[J]. Advances in New and Renewable Energy, 2016 , 4(4) : 305 -311 . DOI: 10.3969/j.issn.2095-560X.2016.04.007
[1] LINDEN D, REDDY T B. Handbook of batteries[M]. 3rd ed. New York: McGraw-Hill, 2001.
[2] RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and sustainable energy reviews, 2011, 15(9): 4554-4571. DOI: 10.1016/j.rser.2011.07.096.
[3] TODD M. BANDHAUER, SRINIVAS GARIMELLA, THOMAS F. FULLER. A critical review of thermal issues in lithium-ion batteries[J]. J. Electrochem. Soc, 2011, 158(3): 1-25. doi:10.1149/1.3515880. http://jes.ecsdl.org/content/158/3/R1
[4] WANG J, LIU P, HICKS-GARNER J, et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of power sources,2011,196(8):3942-3948.DOI:10.1016/j.jpowsour.2010.11.134.
[5] SARRE G, BLANCHARD P, BROUSSELY M. Aging of lithium-ion batteries[J]. Journal of power sources, 2004,
127(1/2): 65-71. DOI: 10.1016/j.jpowsour.2003.09.008.
[6] PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of power sources, 2002, 110(2): 377-382. DOI: 10.1016/S0378-7753(02)00200-8.
[7] BITSCHE O, GUTMANN G. Systems for hybrid cars[J]. Journal of power sources, 2004, 127(1/2): 8-15. DOI: 10.1016/j.jpowsour.2003.09.003.
[8] KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation[J]. Journal of power sources, 2005, 142(1/2): 345-353. DOI: 10.1016/j.jpowsour.2004.09.033.
[9] SABBAH R, KIZILEL R, SELMAN J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution[J]. Journal of power sources, 2008, 182(2): 630-638. DOI: 10.1016/j.jpowsour.2008.03.082.
[10] 彭影, 黄瑞, 俞小莉, 等. 电动汽车锂离子动力电池冷却方案的对比研究[J]. 机电工程, 2015, 32(4): 537-543. DOI: 10.3969/j.issn.1001-4551.2015.04.020.
[11] MILLS A, AL-HALLAJ S. Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of power sources, 2005, 141(2): 307-315. DOI: 10.1016/j.jpowsour.2004.09.025.
[12] LI W Q, QU Z G, He Y L, et al. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials[J]. Journal of power sources, 2014, 255: 9-15. DOI: 10.1016/j.jpowsour.2014. 01.006.
[13] LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied energy, 2015, 148: 403-409. DOI: 10.1016/j.apenergy.2015.03.080.
[14] XU X M, HE R. Review on the heat dissipation performance of battery pack with different structures and operation conditions[J]. Renewable and sustainable energy reviews, 2014, 29: 310-315. DOI: 10.1016/j.rser.2013.08.057.
[15] LI X S, HE F, MA L. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation[J]. Journal of power sources, 2013, 238: 395-402. DOI: 10.1016/ j.jpowsour.2013.04.073.
[16] WANG T, Tseng K J, ZHAO J Y, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied energy, 2014, 134: 229-238. DOI: 10.1016/j.apenergy.2014.08.013.
[17] WANG T, TSENG K J, ZHAO J Y. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J]. Applied thermal engineering, 2015, 90: 521-529. DOI: 10.1016/j.applthermaleng.2015.07.033.
[18] YANG N X, ZHANG X W, LI G J, et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: a comparative analysis between aligned and staggered cell arrangements[J]. Applied thermal engineering, 2015, 80: 55-65. DOI: 10.1016/j.applthermaleng. 2015.01.049.
[19] HE F, MA L. Thermal management of batteries employing active temperature control and reciprocating cooling flow[J]. International journal of heat and mass transfer, 2015, 83: 164-172. DOI: 10.1016/j.ijheatmasstransfer. 2014.11.079.
[20] ZHAO J T, RAO Z H, HUO Y T, et al. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles[J]. Applied thermal engineering, 2015, 85: 33-43. DOI: 10.1016/j.applthermaleng.2015.04.012.
[21] PARK H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles[J]. Journal of power sources, 2013, 239: 30-36. DOI: 10.1016/ j.jpowsour.2013.03.102.
[22] WU M S, LIU K H, WANG Y Y, et al. Heat dissipation design for lithium-ion batteries[J]. Journal of power sources, 2002, 109(1): 160-166. DOI: 10.1016/S0378-7753(02)00048-4.
[23] 张志杰, 李茂德. 锂离子电池内阻变化对电池温升影响分析[J]. 电源技术, 2010, 34(2): 128-130. DOI: 10.3969/j.issn.1002-087X.2010.02.011.
/
〈 |
|
〉 |