Welcome to visit Advances in New and Renewable Energy!

Enhancement of Frequency Responsibility of Si PIN-PD via Additional Red Phosphor Film

  • LI Shang-bin ,
  • HUANG Bo-yang ,
  • LI Guo-qiang ,
  • CHEN Ming ,
  • LUO Jiang-hua ,
  • XU Zheng-yuan
Expand
  • 1. CAS Key Laboratory of Wireless-Optical Communications, School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China;
    2. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China;
    3. National Mobile Communications Research Laboratory, School of Information Science and Engineering, Southeast University, Nanjing 210096, China;
    4. Guangdong Solid State Lighting Industry Innovation Center, Guangdong Foshan 528226, China

Received date: 2015-12-21

  Revised date: 2016-08-30

  Online published: 2016-10-28

Abstract

Ordinarily, the Si PIN photodiode tends to be more responsive to the NIR or red light than blue light or NUV light. Here, we studied the role of an additional red phosphor film on the enhancement of NUV 375 nm responsibility of Si PIN photodiode. The experimental results show that the red phosphor film can effectively improve the responsibility and sensitivity of Si PIN photodiode. Meanwhile, the bandwidth of the frequency response of such a photodetector is not significantly affected by the red phosphor.

Cite this article

LI Shang-bin , HUANG Bo-yang , LI Guo-qiang , CHEN Ming , LUO Jiang-hua , XU Zheng-yuan . Enhancement of Frequency Responsibility of Si PIN-PD via Additional Red Phosphor Film[J]. Advances in New and Renewable Energy, 2016 , 4(5) : 341 -344 . DOI: 10.3969/j.issn.2095-560X.2016.05.001

References

[1] KOMINE T, NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE transactions on consumer electronics, 2004, 50(1): 100-107. DOI: 10.1109/TCE.2004.1277847.

[2] CUI K Y, CHEN G, XU Z Y, et al. Line-of-sight visible light communication system design and demonstration[C] // 2010 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP). Newcastle, UK: IEEE, 2010: 621-625.

[3] KALYVAS N, LIAPARINOS P, MICHAIL C, et al. Studying the luminescence efficiency of Lu2O3: Eu nanophosphor material for digital X-ray imaging applications[J]. Applied physics A, 2012, 106(1): 131-136. DOI: 10.1007/s00339-011-6640-5.

[4] KALIVAS N, COSTARIDOU L, KANDARAKIS I, et al. Optical gain signal-to-noise ratio transfer efficiency as an index for ranking of phosphor-photodetector combinations used in X-ray medical imaging[J]. Applied physics A, 2004, 78(6): 915-919. DOI: 10.1007/s00339-003-2089-5.

[5] TRUPKE T, GREEN M A, WÜRFEL P. Improving solar cell efficiencies by up-conversion of sub-band-gap light[J]. Journal of applied physics, 2002, 92(7): 4117-4122. DOI: 10.1063/1.1505677.

[6] SHALAV A, RICHARDS B S, GREEN M A. Luminescent layers for enhanced silicon solar cell performance: Up-conversion[J]. Solar energy materials and solar cells, 2007, 91(9): 829-842. DOI: 10.1016/ j.solmat.2007.02.007.

[7] TRUPKE T, GREEN M A, WÜRFEL P. Improving solar cell efficiencies by down-conversion of high-energy photons[J]. Journal of applied physics, 2002, 92(3): 1668-1674. DOI: 10.1063/1.1492021.

[8] RICHARDS B S. Luminescent layers for enhanced silicon solar cell performance: Down-conversion[J]. Solar energy materials and solar cells, 2006, 90(9): 1189-1207. DOI: 10.1016/j.solmat.2005.07.001.

[9] HUANG X Y, HAN S Y, HUANG W, et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters[J]. Chemical society reviews, 2013, 42: 173-201. DOI: 10.1039/C2CS35288E.

Outlines

/