Advances in New and Renewable Energy >
Liquid-Gas Flow in Carbon-Paper Gas Diffusion Layer of Proton Exchange Membrane Fuel Cell: A Lattice Boltzmann Simulation Study
Received date: 2016-03-10
Revised date: 2016-07-22
Online published: 2016-10-28
To improve the water management of proton exchange membrane fuel cell (PEMFC), the two-phase (liquid water and air) transport in the carbon-paper gas diffusion layer (GDL) of PEMFC was simulated and analyzed by using the pseudopotential multiphase lattice Boltzmann model (LBM), which mainly focused on the effects of GDL hydrophobicity on the two-phase transport. The results encompass: for a GDL of lower hydrophobicity, liquid water is easier to seep into the pore space, and thus reach a higher liquid saturation level in the GDL; while for a GDL of higher hydrophobicity, the liquid water can hardly enter the pores of smaller size, but flows along the pathways connecting the pores of relatively larger size, leading to the formation of a capillary-fingering flow.
WU Wei , CHEN Wang , JIANG Fang-ming . Liquid-Gas Flow in Carbon-Paper Gas Diffusion Layer of Proton Exchange Membrane Fuel Cell: A Lattice Boltzmann Simulation Study[J]. Advances in New and Renewable Energy, 2016 , 4(5) : 351 -357 . DOI: 10.3969/j.issn.2095-560X.2016.05.003
[1] WANG C Y. Fundamental models for fuel cell engineering[J]. Chemical reviews, 2004, 104(10): 4727-4766. DOI: 10.1021/cr020718s.
[2] JIANG F M, WANG C Y. Numerical modeling of liquid water motion in a polymer electrolyte fuel cell[J]. International journal of hydrogen energy, 2014, 39(2): 942-950. DOI: 10.1016/j.ijhydene.2013.10.113.
[3] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of computational physics, 1981, 39(1): 201-225. DOI: 10.1016/0021-9991(81)90145-5.
[4] ZHU X, SUI P C, DJILALI N. Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel[J]. Journal of power sources, 2008, 181(1): 101-115. DOI: 10.1016/j.jpowsour.2008.03.005.
[5] CHEN S Q, LIAO B. A coupled level set and volume of fluid method for tracking moving interface in multiphase flow[J]. Journal of ship mechanics, 2012, 16(3): 203-217. DOI: 10.3969/j.issn.1007-7294.2012.03.001.
[6] MUKHERJEE P P, KANG Q J, WANG C Y. Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells?progress and perspective[J]. Energy & environmental science, 2010, 4(2): 346-369. DOI: 10.1039/B926077C.
[7] HAO L, CHENG P. Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell[J]. Journal of power sources, 2010, 195(12): 3870-3881. DOI: 10.1016/ j.jpowsour.2009.11.125.
[8] ZHOU P, WU C W. Liquid water transport mechanism in the gas diffusion layer[J]. Journal of power sources, 2010, 195(5): 1408-1415. DOI: 10.1016/j.jpowsour.2009. 09.019.
[9] MOLAEIMANESH G, AKBARI M H. Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method[J]. Korean journal of chemical engineering, 2014, 31(4): 598-610. DOI: 10.1007/s11814-013-0282-6.
[10] CHEN L, LUAN H B, HE Y L, et al. Numerical investigation of liquid water transport and distribution in porous gas diffusion layer of a proton exchange membrane fuel cell using lattice Boltzmann method[J]. Russian journal of electrochemistry, 2012, 48(7): 712-726. DOI: 10.1134/S1023193512070026.
[11] PARK J, LI X. Multi-phase micro-scale flow simulation in the electrodes of a PEM fuel cell by lattice Boltzmann method[J]. Journal of power sources, 2008, 178(1): 248-257. DOI: 10.1016/j.jpowsour.2007.12.008.
[12] LUO L S. Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases[J]. Physical review e, 2000, 62(4): 4982-4996. DOI: 10.1103/ PhysRevE.62.4982.
[13] SHAN X W, CHEN H D. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical review e, 1993, 47(3): 1815-1819. DOI: 10.1103/ PhysRevE.47.1815.
[14] SHAN X W, CHEN H D. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J]. Physical review e, 1994, 49(4): 2941-2948. DOI: 10.1103/PhysRevE.49.2941.
[15] SHAN X W, DOOLEN G. Multicomponent lattice- Boltzmann model with interparticle interaction[J]. Journal of statistical physics, 1995, 81(1/2): 379-393. DOI: 10.1007/BF02179985.
[16] SHAN X W, DOOLEN G. Diffusion in a multicomponent lattice Boltzmann equation model[J]. Physical review e, 1996, 54(4): 3614-3620. DOI: 10.1103/PhysRevE.54.3614.
[17] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical review letters, 1995, 75(5): 830-833. DOI: 10.1103/ PhysRevLett.75.830.
[18] SWIFT M R, ORLANDINI E, OSBORN W R, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical review e, 1996, 54(5): 5041-5052. DOI: 10.1103/PhysRevE.54.5041.
[19] ZHENG H W, SHU C, CHEW Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J]. Journal of computational physics, 2006, 218(1): 363-371. DOI: 10.1016/j.jcp.2006.02.015.
[20] INAMURO T, OGATA T, TAJIMA S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences[J]. Journal of computational physics, 2004, 198(2): 628-644. DOI: 10.1016/j.jcp.2004.01.019.
[21] HE X Y, SHAN X W, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J]. Physical Review e, 1998, 57(1): R13-R16. DOI: 10.1103/ PhysRevE.57.R13.
[22] FRISCH U, D’HUMIÈRES, HASSLACHER B, et al. Lattice gas hydrodynamics in two and three dimensions[J]. Complex Systems. 1987, 1(4): 649-707.
[23] FRISCH U, HASSLACHER B, POMEAU Y. Lattice-gas automata for the Navier-Stokes equation[J]. Physical review letters, 1986, 56(14): 1505-1508. DOI: 10.1103/PhysRevLett.56.1505.
[24] D'HUMIÈRES D, LALLEMAND P, FRISCH U. Lattice gas models for 3D hydrodynamics[J]. Europhysics letters, 1986, 2(4): 291-297. DOI: 10.1209/0295-5075/ 2/4/006.
[25] SCHULZ V P, BECKER J, WIEGMANN A, et al. Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach[J]. Journal of the electrochemical society, 2007, 154(4): B419-B426. DOI: 10.1149/1.2472547.
[26] SCHULZ V P, MUKHERJEE P P, BECKER J, et al. Numerical evaluation of effective gas diffusivity- saturation dependence of uncompressed and compressed gas diffusion media in PEFCs[J]. ECS transactions, 2006, 3(1): 1069-1075. DOI: 10.1149/1.2356226.
[27] WU W, JIANG F M. Microstructure reconstruction and characterization of PEMFC electrodes[J]. International journal of hydrogen energy, 2014, 39(28): 15894-15906. DOI: 10.1016/j.ijhydene.2014.03.074.
/
〈 |
|
〉 |