Welcome to visit Advances in New and Renewable Energy!

Design and Optimization of Air-Cooled Structure for Lithium-Ion Battery Pack

  • BAI Fan-fei ,
  • CHEN Ming-biao ,
  • SONG Wen-ji ,
  • FENG Zi-ping
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China 

Received date: 2016-05-12

  Revised date: 2016-06-11

  Online published: 2016-10-28

Abstract

Optimizing scheme of the air-cooled battery pack structure was designed by using the  orthogonal test. The effects of the battery pack’s space decline range and the inclination angles of upper and lower deflectors on its temperature field, flow field and pressure drop were studied numerically. The optimal structure of the battery pack was determined: the space decline range is 0.3 mm, the angle of the upper deflector of 0° and the angle of the lower deflector is 5°. Temperature characteristics of the battery pack of such optimal structure were then investigated experimentally and numerically at discharging rates of 0.5 C, 1 C and 2 C, respectively. The results show that both the maximum temperature and the temperature field uniformity of the battery pack can meet the requirements.

Cite this article

BAI Fan-fei , CHEN Ming-biao , SONG Wen-ji , FENG Zi-ping . Design and Optimization of Air-Cooled Structure for Lithium-Ion Battery Pack[J]. Advances in New and Renewable Energy, 2016 , 4(5) : 358 -363 . DOI: 10.3969/j.issn.2095-560X.2016.05.004

References

[1] PALACÍN M R, DE GUIBERT A. Why do batteries fail?[J]. Science, 2016, 351(6273): 1253292. DOI: 10.1126/science.1253292.

[2] PARK H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles[J]. Journal of power sources, 2013, 239: 30-36. DOI: 10.1016/ j.jpowsour.2013.03.102.

[3] 赵佳腾, 饶中浩, 刘新健, 等. 大功率锂离子动力电池组散热特性数值模拟[J]. 新能源进展, 2014, 2(6): 471-475. DOI: 10.3969/j.issn.2095-560X.2014.06.010.

[4] 孙秋娟, 王青松, 平平, 等. 循环充放电条件下锂离子电池的温度模拟[J]. 新能源进展, 2014, 2(4): 315-321. DOI: 10.3969/j.issn.2095-560X.2014.04.0012.

[5] 白帆飞, 宋文吉, 陈明彪, 等. 锂离子电池组热管理系统研究现状[J]. 电池, 2016, 46(3): 168-171.

[6] CHO G Y, CHOI J W, PARK J H, et al. Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles[J]. International journal of automotive technology, 2014, 15(5): 795-803. DOI: 10.1007/s12239-014-0083-x.

[7] 刘瑞江, 张业旺, 闻崇炜, 等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9): 52-55. DOI: 10.3969/j.issn.1002-4956.2010.09.016.

[8] LIU Y P, OUYANG C Z, JIANG Q B, et al. Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow[J]. Journal of central south university, 2015, 22(10): 3970-3976. DOI: 10.1007/s11771-015-2941-8.

[9] GIULIANO M R, PRASAD A K, ADVANI S G. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries[J]. Journal of power sources, 2012, 216: 345-352. DOI: 10.1016/j.jpowsour.2012.05.074.

[10] 罗玲, 宋文吉, 林仕立, 等. 锂离子电池热模型的研究现状[J]. 电池, 2015, 45(5): 280-283. DOI: 10.3969/j.issn. 1001-1579.2015.05.013.

[11] XU M, ZHANG Z Q, WANG X, et al. A pseudo three- dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process[J]. Energy, 2015, 80: 303-317. DOI: 10.1016/j.energy.2014.11.073.

Outlines

/