Advances in New and Renewable Energy >
Research Progress on Capacity Fading Mechanisms of Lithium-Ion Batteries
Received date: 2016-07-28
Revised date: 2016-09-01
Online published: 2016-10-28
Capacity fading is directly related to the cycle life of lithium-ion batteries. The reasons of capacity fading include growth of the solid electrolyte interface (SEI) film, degradation and dissolution and phase transition of active materials, overcharging-discharging, decomposition of the electrolyte, abnormal temperature, corrosion of current collector and so on. This article reviews the research progresses on capacity fading mechanisms of lithium-ion batteries in recent years.
Key words: lithium-ion battery; capacity fading; mechanism
SONG Wen-ji , CHEN Yong-zhen , Lü Jie , LIN Shi-li , CHEN Ming-biao , FENG Zi-ping . Research Progress on Capacity Fading Mechanisms of Lithium-Ion Batteries[J]. Advances in New and Renewable Energy, 2016 , 4(5) : 364 -372 . DOI: 10.3969/j.issn.2095-560X.2016.05.005
[1] 马苓, 杜光远, 徐强, 等. 锂离子电池容量衰减机理的研究进展[J]. 电源技术, 2014, 138(3): 553-556.
[2] RAMADESIGAN V, CHEN K J, BURNS N A, et al. Parameter estimation and capacity fade analysis of lithium-ion batteries using reformulated models[J]. Journal of the electrochemical society, 2011, 158(9): A1048-A1054. DOI: 10.1149/1.3609926.
[3] ISHIDZU K, OKA Y, NAKAMURA T. Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2[J]. Solid state ionics, 2016, 288: 176-179. DOI: 10.1016/j.ssi.2016.01.009.
[4] SWALLOW J G, WOODFORD W H, MCGROGAN F P, et al. Effect of electrochemical charging on elastoplastic properties and fracture toughness of LixCoO2[J]. Journal of the electrochemical society, 2014, 161(11): F3084-F3090. DOI: 10.1149/2.0141411jes.
[5] DIERCKS D R, MUSSELMAN M, MORGENSTERN A, et al. Evidence for anisotropic mechanical behavior and nanoscale chemical heterogeneity in cycled LixCoO2[J]. Journal of the electrochemical society, 2014, 161(11): F3039-F3045. DOI: 10.1149/2.0071411jes.
[6] SURACE Y, SIMÕES M, POKRANT S, et al. Capacity fading in Li3MnO4: a post-mortem analysis[J]. Journal of electroanalytical chemistry, 2016, 766: 44-51. DOI: 10.1016/j.jelechem.2016.01.029.
[7] ZHU J, ZENG K Y, LU L. Cycling effects on surface morphology, nanomechanical and interfacial reliability of LiMn2O4 cathode in thin film lithium ion batteries[J]. Electrochimica acta, 2012, 68: 52-59. DOI: 10.1016/j.electacta.2012.02.032.
[8] KIM N Y, YIM T, SONG J H, et al. Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy[J]. Journal of power sources, 2016, 307: 641-648. DOI: 10.1016/j.jpowsour.2016.01.023.
[9] RHODES K, MEISNER R, KIM Y, et al. Evolution of phase transformation behavior in Li(Mn1.5Ni0.5)O4 cathodes studied by in situ XRD[J]. Journal of the electrochemical society, 2011, 158(8): A890-A897. DOI: 10.1149/1.3596376.
[10] FANG X, DING N, FENG X Y, et al. Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: electrochemical performance, diffusion coefficient and capacity loss mechanism[J]. Electrochimica acta, 2009, 54(28): 7471-7475. DOI: 10.1016/j.electacta.2009.07.084.
[11] JOSHI T, EOM K S, YUSHIN G, et al. Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries[J]. Journal of the electrochemical society, 2014, 161(12): A1915-A1921. DOI: 10.1149/2.0861412jes.
[12] AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76. DOI: 10.1016/j.carbon.2016.04.008.
[13] JANA M, SIL A, RAY S. Morphology of carbon nanostructures and their electrochemical performance for lithium ion battery[J]. Journal of physics and chemistry of Solids, 2014, 75(1): 60-67. DOI: 10.1016/j.jpcs.2013.08.009.
[14] SMITH A J, BURNS J C, ZHAO X M, et al. A high precision coulometry study of the SEI growth in Li/graphite cells[J]. Journal of the electrochemical society, 2011, 158(5): A447-A452. DOI: 10.1149/1.3557892.
[15] 杨丽杰. 锂离子电池石墨类碳负极的容量衰减机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 34-40.
[16] LIU P, WANG J, HICKS-GAMER J, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses[J]. Journal of the electrochemical society, 2010, 157(4): A499-A507. DOI: 10.1149/1.3294790.
[17] YANG L J, CHENG X Q, MA Y L, et al. Changing of SEI film and electrochemical properties about MCMB electrodes during long-term charge/discharge cycles[J]. Journal of the electrochemical society, 2013, 160(11): A2093-A2099. DOI: 10.1149/2.064311jes.
[18] PARK G, GUNAWARDHANA N, NAKAMURA H, et al. The study of electrochemical properties and lithium deposition of graphite at low temperature[J]. Journal of power sources, 2012, 199: 293-299. DOI: 10.1016/ j.jpowsour.2011.10.058.
[19] EDSTRÖM K, GUSTAFSSON T, THOMAS J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochimica acta, 2004, 50(2/3): 397-403. DOI: 10.1016/j.electacta.2004.03.049.
[20] KAWAMURA T, OKADA S, YAMAKI J I. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells[J]. Journal of power sources, 2006, 156(2): 547-554. DOI: 10.1016/j.jpowsour.2005.05.084.
[21] TEBBE J L, HOLDER A M, MUSGRAVE C B. Mechanisms of LiCoO2 cathode degradation by reaction with HF and protection by thin oxide coatings[J]. ACS applied materials & interfaces, 2015, 7(43): 24265-24278. DOI: 10.1021/acsami.5b07887.
[22] YANG X L, XING J L, LIU X, et al. Performance improvement and failure mechanism of LiNi0.5Mn1.5O4/ graphite cells with biphenyl additive[J]. Physical chemistry chemical physics, 2014, 16(44): 24373-24381. DOI: 10.1039/C4CP03173C.
[23] BRAITHWAITE J W, GONZALES A, NAGASUBRAMANIAN G, et al. Corrosion of lithium-ion battery current collectors[J]. Journal of the electrochemical society, 1999, 146(2): 448-456. DOI: 10.1149/1.1391627.
[24] NIEDZICKI L, ?UKOWSKA G Z, BUKOWSKA M, et al. New type of imidazole based salts designed specifically for lithium ion batteries[J]. Electrochimica acta, 2010, 55(4): 1450-1454. DOI: 10.1016/j.electacta. 2009.05.008.
[25] 肖顺华, 章明方. 水分对锂离子电池性能的影响[J]. 应用化学, 2005, 22(7): 764-767. DOI: 10.3969/j.issn. 1000-0518.2005.07.014.
[26] 刘伶, 关昶. 锂离子电池铝集流体腐蚀行为的研究进展[J]. 电池工业, 2011, 16(2): 121-125. DOI: 10.3969/ j.issn.1008-7923.2011.02.013.
[27] KIM Y S, LEE S H, SON M Y, et al. Succinonitrile as a corrosion inhibitor of copper current collectors for overdischarge protection of lithium ion batteries[J]. ACS applied materials & interfaces, 2014, 6(3): 2039-2043. DOI: 10.1021/am405092y.
[28] EROL S, ORAZEM M E, MULLER R P. Influence of overcharge and over-discharge on the impedance response of LiCoO2|C batteries[J]. Journal of power sources, 2014, 270: 92-100. DOI: 10.1016/j.jpowsour. 2014.07.038.
[29] LI H F, GAO J K, ZHANG S L. Effect of overdischarge on swelling and recharge performance of lithium ion cells[J]. Chinese journal of chemistry, 2008, 26(9): 1585-1588. DOI: 10.1002/cjoc.200890286.
[30] ZHANG L L, MA Y L, CHENG X Q, et al. Capacity fading mechanism during long-term cycling of over- discharged LiCoO2/mesocarbon microbeads battery[J]. Journal of power sources, 2015, 293: 1006-1015. DOI: 10.1016/j.jpowsour.2015.06.040.
[31] LAMB J, ORENDORFF C J, AMINE K, et al. Thermal and overcharge abuse analysis of a redox shuttle for overcharge protection of LiFePO4[J]. Journal of power sources, 2014, 247: 1011-1017. DOI: 10.1016/j.jpowsour. 2013.08.044.
[32] ZHENG Y, QIAN K, LUO D, et al. Influence of over-discharge on the lifetime and performance of LiFePO4/graphite batteries[J]. RSC advances, 2016, 6(36): 30474-30483. DOI: 10.1039/C6RA01677D.
[33] SHU J, SHUI M, XU D, et al. A comparative study of overdischarge behaviors of cathode materials for lithium- ion batteries[J]. Journal of solid state electrochemistry, 2012, 16(2): 819-824. DOI: 10.1007/s10008-011-1484-7.
[34] 张真, 刘兴泉, 张峥, 等. 5V锂离子电池正极材料LiNi0.5Mn1.5O4的进展[J]. 电池, 2011, 41(1): 47-50. DOI: 10.3969/j.issn.1001-1579.2011.01.015.
[35] KIM C A, CHOI H J, LEE J H, et al. Influence of surface modification on electrochemical performance of high voltage spinel ordered-LiNi0.5Mn1.5O4 exposed to 5.3V for 100h before and after surface modification with ALD method[J]. Electrochimica acta, 2015, 184: 134-142. DOI: 10.1016/j.electacta.2015.10.041.
[36] OUYANG M G, REN D S, LU L G, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2 +LiyMn2O4 composite cathode[J]. Journal of power sources, 2015, 279: 626-635. DOI: 10.1016/j.jpowsour.2015.01.051.
[37] AGUBRA V A, FERGUS J W, FU R J, et al. Analysis of effects of the state of charge on the formation and growth of the deposit layer on graphite electrode of pouch type lithium ion polymer batteries[J]. Journal of power sources, 2014, 270: 213-220. DOI: 10.1016/j.jpowsour.2014.07.126.
[38] CUI Y Z, DU C Y, GAO Y Z, et al. Recovery strategy and mechanism of aged lithium ion batteries after shallow depth of discharge at elevated temperature[J]. ACS applied materials & interfaces, 2016, 8(8): 5234-5242. DOI: 10.1021/acsami.5b10474.
[39] WON J H, LEE H S, HAMENU L, et al. Improvement of low-temperature performance by adopting polydimethyl- siloxane-g-polyacrylate and lithium-modified silica nanosalt as electrolyte additives in lithium-ion batteries[J]. Journal of industrial and engineering chemistry, 2016, 37: 325-329. DOI: 10.1016/j.jiec.2016.03.045.
[40] SHI W, HU X S, WANG J L, et al. Analysis of thermal aging paths for large-format LiFePO4/graphite battery[J]. Electrochimica acta, 2016, 196: 13-23. DOI: 10.1016/ j.electacta.2016.02.161.
[41] KLETT M, ZAVALIS T G, KJELL M H, et al. Altered electrode degradation with temperature in LiFePO4/mesocarbon microbead graphite cells diagnosed with impedance spectroscopy[J]. Electrochimica acta, 2014, 141: 173-181. DOI: 10.1016/j.electacta.2014.06.081.
[42] YI T F, MEI J, ZHU Y R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries[J]. Journal of power sources, 2016, 316: 85-105. DOI: 10.1016/j.jpowsour.2016.03.070.
[43] ZIV B, BORGEL V, AURBACH D, et al. Investigation of the reasons for capacity fading in Li-ion battery cells[J]. Journal of the electrochemical society, 2014, 161(10): A1672-A1680. DOI: 10.1149/2.0731410jes.
[44] YOON T, PARK S, MUN J, et al. Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature[J]. Journal of power sources, 2012, 215: 312-316. DOI: 10.1016/j.jpowsour.2012.04.103.
[45] JIN Y C, LU M I, WANG T H, et al. Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion Battery[J]. Journal of power sources, 2014, 262: 483-487. DOI: 10.1016/j.jpowsour.2014.03.089.
[46] PHAM H Q, HWANG E H, KWON Y G, et al. Understanding the interfacial phenomena of a 4.7V and 55℃ Li-ion battery with Li-rich layered oxide cathode and graphite anode and its correlation to high-energy cycling performance[J]. Journal of power sources, 2016, 323: 220-230. DOI: 10.1016/j.jpowsour.2016.05.038.
[47] TU W Q, XING L D, XIA P, et al. Dimethylacetamide as a film-forming additive for improving the cyclic stability of high voltage lithium-rich cathode at room and elevated temperature[J]. Electrochimica acta, 2016, 204: 192-198. DOI: 10.1016/j.electacta.2016.02.170.
[48] KOU J W, CHEN L, SU Y F, et al. Role of cobalt content in improving the low-temperature performance of layered lithium-rich cathode materials for lithium-ion batteries[J]. ACS applied Materials & interfaces, 2015, 7(32): 17910-17918. DOI: 10.1021/acsami.5b04514.
[49] SHI W, HU X S, JIN C, et al. Effects of imbalanced currents on large-format LiFePO4/graphite batteries systems connected in parallel[J]. Journal of power sources, 2016, 313: 198-204. DOI: 10.1016/j.jpowsour.2016.02.087.
[50] CANNARELLA J, ARNOLD C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. Journal of power sources, 2014, 245: 745-751. DOI: 10.1016/j.jpowsour.2013.06.165.
/
〈 |
|
〉 |