Advances in New and Renewable Energy >
Impacts of Distributed Generations with High Penetration Level on Voltage Stability of Power System
Received date: 2016-07-19
Revised date: 2016-09-18
Online published: 2016-10-28
In order to investigate the impacts of distributed generation (DG) with high penetration level on voltage stability of power system, this paper focuses on the characteristics of different DGs, presents corresponding grid-tied control strategies and the DG generators’ dynamic model. Theoretical analysis and numerical study was conducted for the effects of the grid-connection DGs on the grid static voltage, dynamic characteristics of DG speed and frequency under different penetration levels, as well as the impacts of DGs with different control strategies on the power system during the fault. The results show that micro-grid can provide voltage support, but with the penetration increases it generates negative effect on grid stability; and the voltage source DGs can promote the recovery of grid voltage and frequency after the fault.
ZHANG Ji-yuan , HUANG Lei , SHU Jie , WANG Hao , DING Jian-ning . Impacts of Distributed Generations with High Penetration Level on Voltage Stability of Power System[J]. Advances in New and Renewable Energy, 2016 , 4(5) : 379 -385 . DOI: 10.3969/j.issn.2095-560X.2016.05.007
[1] 袁越, 曹阳, 傅质馨, 等. 微电网的节能减排效益评估及其运行优化[J]. 电网技术, 2012, 36(8): 12-18.
[2] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1): 57-70. DOI: 10.13334/ j.0258-8013.pcsee.2014.01.007.
[3] 徐敏, 阮新波, 刘福鑫, 等. 氢光联合供电系统的能量管理[J]. 电工技术学报, 2010, 25(10): 166-175. DOI: 10.3969/j.issn.1000-6753.2010.10.025.
[4] 张国驹, 唐西胜, 齐智平. 平抑间歇式电源功率波动的混合储能系统设计[J]. 电力系统自动化, 2011, 35(20): 24-28, 93.
[5] KHANH L N, SEO J J, KIM Y S, et al. Power- management strategies for a grid-connected PV-FC hybrid system[J]. IEEE transactions on power delivery, 2010, 25(3): 1874-1882. DOI: 10.1109/TPWRD.2010. 2047735.
[6] 陈杨刚, 杨奇逊, 张涛, 等. 微网中双向DC-AC变流器的性能优化控制[J]. 电工技术学报, 2016, 31(7): 81-91.
[7] 赵波, 薛美东, 陈荣柱, 等. 高可再生能源渗透率下考虑预测误差的微电网经济调度模型[J]. 电力系统自动化, 2014, 38(7): 1-8. DOI: 10.7500/AEPS201210254.
[8] 撖奥洋, 邓星, 文明浩, 等. 高渗透率下大电网应对微网接入的策略[J]. 电力系统自动化, 2010, 34(1): 78-83.
[9] 王颖, 文福拴, 赵波, 等. 高密度分布式光伏接入下电压越限问题的分析与对策[J]. 中国电机工程学报, 2016, 36(5): 1200-1206. DOI: 10.13334/j.0258-8013. pcsee.2016.05.004.
[10] KASHEM M A, LEDWICH G. Distributed generation as voltage support for single wire earth return systems[J]. IEEE transactions on power delivery, 2004, 19(3): 1002-1011. DOI: 10.1109/TPWRD.2003.822977.
[11] 周念成, 邓浩, 王强钢, 等. 光伏与微型燃气轮机混合微网能量管理研究[J]. 电工技术学报, 2012, 27(1): 74-84.
[12] PUCCI M, CIRRINCIONE M. Neural MPPT control of wind generators with induction machines without speed sensors[J]. IEEE transactions on industrial electronics, 2011, 58(1): 37-47. DOI: 10.1109/TIE.2010.2043043.
[13] 王成山, 马力, 王守相. 基于双PWM换流器的微型燃气轮机系统仿真[J]. 电力系统自动化, 2008, 32(1): 56-60. DOI: 10.3321/j.issn:1000-1026.2008.01.013.
[14] 陈秋南, 韦钢, 朱昊, 等. 风电/微型燃气轮机混合微电网电压波动优化控制[J]. 电力系统自动化, 2014, 38(9): 226-231. DOI: 10.7500/AEPS20130823003.
[15] JURADO F. Modelling micro-turbines using Hammerstein models[J]. International journal of energy research, 2005, 29(9): 841-855. DOI: 10.1002/er.1102.
[16] 刘君, 穆世霞, 李岩松, 等. 微电网中微型燃气轮机发电系统整体建模与仿真[J]. 电力系统自动化, 2010, 34(7): 85-89.
[17] 张继元, 舒杰, 吴志峰, 等. 微网双向变流器的解耦控制策略研究[J]. 新能源进展, 2014, 2(6): 476-480. DOI: 10.3969/j.issn.2095-560X.2014.06.011.
[18] 张庆海, 彭楚武, 陈燕东, 等. 一种微电网多逆变器并联运行控制策略[J]. 中国电机工程学报, 2012, 32(25): 126-132.
[19] ZHONG Q C, WEISS G. Synchronverters: inverters that mimic synchronous generators[J]. IEEE transactions on industrial electronics, 2011, 58(4): 1259-1267. DOI: 10.1109/TIE.2010.2048839.
[20] 李斌, 刘天琪, 李兴源. 分布式电源接入对系统电压稳定性的影响[J]. 电网技术, 2009, 33(3): 84-88.
[21] 符杨, 胡鹏, 汤波, 等. 微网对电网稳定性影响的仿真与分析[J]. 电源技术, 2015, 39(3): 556-560. DOI: 10.3969/j.issn.1002-087X.2015.03.036.
[22] 周双喜, 朱凌志, 郭锡玖, 等. 电力系统电压稳定性及其控制[M]. 北京: 中国电力出版社, 2004.
/
〈 |
|
〉 |