Advances in New and Renewable Energy >
Auto-Ignition Delay Time of C1–C4 Alkanes under Micro-Internal Combustion Engine Operative Conditions
Received date: 2016-07-05
Revised date: 2016-08-27
Online published: 2016-10-28
The ignition delay time is a crucial parameter in the glow plug ignition of micro-internal combustion engine (MICE). The effects of important operating parameters, such as the fuel species (methane, ethane, propane and n-butane), the initial temperature (500 K ~ 1 000 K), the initial pressure (1 ~ 10 atm) and equivalence ratio (0.6 ~ 1.2), on the ignition delay times were carried out via numerical simulation with Chemkin-Pro software. In addition, the effects of the residual exhaust gas caused by halfway scavenging on the ignition delay times of n-butane/air mixtures were investigated. The result shows that n-butane is a suitable fuel for MICE with glow plug ignition because of its short ignition delay time. Meanwhile, the ignition delay time decreases with the increase of the initial temperature, pressure and equivalence ratio. Moreover, the residual exhaust gas causes an increase of the ignition delay time of n-butane/air mixtures, and components of the exhaust have separated influence on the ignition delay time due to their different thermal and the chemical kinetic effects.
ZHANG Yun-lu , HUO Jie-peng , JIANG Li-qiao , LI Xing , ZHAO Dai-qing . Auto-Ignition Delay Time of C1–C4 Alkanes under Micro-Internal Combustion Engine Operative Conditions[J]. Advances in New and Renewable Energy, 2016 , 4(5) : 399 -403 . DOI: 10.3969/j.issn.2095-560X.2016.05.010
[1] DAHM W J A, NI J, MIJIT K, et al. Micro internal combustion swing engine (MICSE) for portable power generation systems[C]//DAHM W, UNIV M, ARBOR A. 40th AIAA Aerospace Sciences Meeting & Exhibit, Aerospace Sciences Meetings. Reno, NV, U.S.A: AIAA, 2001, 1050: 48109-2140. DOI: 10.2514/6.2002-722.
[2] JU Y, MARUTA K. Microscale combustion: technology development and fundamental research[J]. Progress in energy and combustion science, 2011, 37(6): 669-715. DOI: 10.1016/j.pecs.2011.03.001
[3] 曹海亮. 微尺度燃烧特性及微能源系统的研制[D]. 合肥: 中国科学技术大学, 2006.
[4] FU K, KNOBLOCH A J, MARTINEZ F C, et al. Design and fabrication of a silicon-based MEMS rotary engine[C]//Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition. Denver, Colorado, USA: ASME, 2001: 875-880.
[5] LIU Q F, JIANG L Q, YANG W B, et al. Experimental study of flame propagation in single chamber of MICSE[C]// Proceedings pf the 10th Asia-Pacific Conference on Combustion, ASPACC 2015. Beijing, China: ASPACC, 2015.
[6] MIJIT K. Design, analysis, and experimentation of a micro internal combustion swing engine[M]. Ann Arbor, US: University of Michigan, 2000.
[7] 郭志平, 张仕民. 新型二冲程微型摆式内燃机的设计方法[M]. 北京: 国防工业出版社, 2013.
[8] POMPA J, KARNANI S, DUNN-RANKIN D. Performance characterization and combustion analysis of a centimeter- scale internal combustion engine[J]. Journal of aeronautics, astronautics and aviation. series a, 2008, 40(4): 205-216.
[9] DESIGN R. Chemkin-Pro 15101[CP]. San Diego, CA: Reaction Design, 2010.
[10] METCALFE W K, BURKE S M, AHMED S S, et al. A hierarchical and comparative kinetic modeling study of C1−C2 hydrocarbon and oxygenated fuels[J]. International journal of chemical kinetics, 2013, 45(10): 638-675. DOI: 10.1002/kin.20802.
[11] HEALY D, DONATO N S, AUL C J, et al. n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations[J]. Combustion and flame, 2010, 157(8): 1526-1539. DOI:10.1016/ j.combustflame.2010.01.016.
[12] SABIA P, DE JOANNON M, LAVADERA M L, et al. Autoignition delay times of propane mixtures under MILD conditions at atmospheric pressure[J]. Combustion and flame, 2014, 161(12): 3022-3030. DOI: 10.1016/j.combustflame.2014.06.006
[13] DE SAIN J D, KLIPPENSTEIN S J, MILLER J A, et al. Measurements, theory, and modeling of OH formation in ethyl+O2 and propyl+O2 reactions[J]. The journal of physical chemistry a, 2003, 107(22): 4415-4427. DOI: 10.1021/jp0221946.
[14] HEALY D, KOPP M M, POLLEY N L, et al. Methane/ n-butane ignition delay measurements at high pressure and detailed chemical kinetic simulations[J]. Energy & fuels, 2010, 24(3): 1617-1627. DOI: 10.1021/ef901292j.
[15] SABIA P, LAVADERA M L, GIUDICIANNI P, et al. CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions[J]. Combustion and flame, 2015, 162(3): 533-543. DOI: 10.1016/j.combustflame.2014.08.009
[16] WANG L, LIU Z H, CHEN S, et al. Physical and chemical effects of CO2 and H2O additives on counterflow diffusion flame burning methane[J]. Energy & fuels, 2013, 27(12): 7602-7611. DOI: 10.1021/ef401559r.
[17] ZHANG Y J, HUANG Z H, WEI L J, et al. Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures[J]. Combustion and flame, 2012, 159(3): 918-931. DOI: 10.1016/j.combustflame.2011.09.010
/
〈 |
|
〉 |