Welcome to visit Advances in New and Renewable Energy!

Optimization and Analysis of Ammonia-Water Absorption Power/Cooling Integrated Cycle with Geothermal Energy

  • WANG Yun-shan ,
  • HUA Jun-ye ,
  • LI Gui ,
  • SHAO Ying-shu
Expand
  • 1. Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China;                                                                 
    2. Jiangsu Geology Geothermal Energy Co., Ltd., Nanjing 211100, China

Received date: 2016-09-18

  Revised date: 2016-10-25

  Online published: 2016-12-28

Abstract

Analysis and optimization on thermodynamic performance of the ammonia-water absorption power/cooling integrated cycle driven by mid- or low-grade geothermal energy were conducted in this study. Based on the Kalina cycle, by applying the evaporation characteristic of ammonia-water, the forward power sub-process was combined with the reverse refrigeration sub-process, which realized the hybrid generation of power and cooling capacity simultaneously. Four main parameters were analyzed on their effect on the thermal performance of the integrated cycle, including the working fluid concentration xw/xb, ammonia dew-point temperature t14, circulation ratio K, and chilling fraction n. The result showed that under the optimal condition, (xw/xb=0.50/0.32, t14=180℃, K=2.80 and n=0.505), the thermal efficiency of the integrated cycle could reach up to 19.38%, which is 3.71% higher than that of ammonia-water power cycle and 8.54% than that of Rankine cycle, repectively. Besides, the integrated cycle presented much higher exergy efficiency of 59.77% comparing with the other two cycles.

Cite this article

WANG Yun-shan , HUA Jun-ye , LI Gui , SHAO Ying-shu . Optimization and Analysis of Ammonia-Water Absorption Power/Cooling Integrated Cycle with Geothermal Energy[J]. Advances in New and Renewable Energy, 2016 , 4(6) : 455 -461 . DOI: 10.3969/j.issn.2095-560X.2016.06.005

References

[1] 陈世玉, 华君叶, 陈亚平, 等. 用于余热回收的三压力氨水动力循环的热力性能[J]. 东南大学学报(自然科学版), 2012, 42(4): 659-663. DOI:10.3969/j.issn.1001- 0505.2012.04.016.

[2] ZARE V, MAHMOUDI S M S, YARI M. Ammonia- water cogeneration cycle for utilizing waste heat from the GT-MHR plant[J]. Applied thermal engineering, 2012, 48: 176-185. DOI: 10.1016/j.applthermaleng.2012. 05.009.

[3] NASRUDDIN, USVIKA R, RIFALDI M, et al. Energy and exergy analysis of Kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation[J]. Journal of mechanical science and technology, 2009, 23(7): 1871-1876. DOI: 10.1007/s12206-009-0617-8.

[4] 黄惠兰, 陈强, 李刚. 低品位能源发电系统研究进展[J]. 热力发电, 2015, 44(8): 8-13. DOI:10.3969/j.issn. 1002-3364.2015.08.008.

[5] HUA J Y, CHEN Y P, WANG Y D, et al. Thermodynamic analysis of ammonia–water power/chilling cogeneration cycle with low-grade waste heat[J]. Applied thermal engineering, 2014, 64(1/2): 483-490. DOI: 10.1016/ j.applthermaleng.2013.12.043.

[6] 张颖, 何茂刚, 贾真, 等. Kalina循环的热力学第一定律分析[J]. 动力工程, 2007, 27(2): 218-222. DOI: 10.3321/j.issn:1000-6761.2007.02.015.

[7] CHEN Y PG, GUO Z W, WU J F, et al. Energy and exergy analysis of integrated system of ammonia-water Kalina-Rankine cycle[J]. Energy, 2015, 90: 2028-2037. DOI: 10.1016/j.energy.2015.07.038.

[8] 陈小砖, 柳建华, 张良, 等. 氨水吸收式制冷系统及关键设备的研究综述[J]. 低温与超导, 2013, 41(6): 47-51. DOI:10.3969/j.issn.1001-7100.2013.06.011.

[9] 鲍帅阳, 杜凯, 储云霄, 等. 高/低压区氨水吸收/压缩复合制冷循环性能分析[J]. 制冷技术, 2014, 34(3): 42-48. DOI:10.3969/j.issn.2095-4468.2014.03.205.

[10] ZAMFIRESCU C, DINCER I. Thermodynamic analysis of a novel ammonia-water trilateral Rankine cycle[J]. Thermochimica acta, 2008, 477(1-2): 7-15. DOI: 10.1016/ j.tca.2008.08.002.

[11] LU S G, GOSWAMI D Y. Optimization of a novel combined power/refrigeration thermodynamic cycle[J]. Journal of solar energy engineering, 2003, 125(2): 212-217. DOI:10.1115/1.1562950.

[12] PADILLA R V, DEMIRKAYA G, GOSWAMI D Y, et al. Analysis of power and cooling cogeneration using ammonia-water mixture[J]. Energy, 2010, 35(12): 4649- 4657. DOI: 10.1016/j.energy.2010.09.042.

[13] KALINA A I. Combined-cycle system with novel bottoming cycle[J]. Journal of engineering for gas turbines and power, 1984, 106(4): 737-742. DOI:10.1115/1.3239632.

[14] 郑丹星, 陈斌, 齐云, 等. 新型氨吸收式动力/制冷复合循环的热力学分析[J]. 工程热物理学报, 2002, 23(5): 539-542. DOI:10.3321/j.issn:0253-231X.2002.05.003.

[15] 刘猛, 张娜, 蔡睿贤. 氨吸收式串联型动力/制冷复合循环[J]. 工程热物理学报, 2006, 27(1): 9-12. DOI: 10.3321/j.issn:0253-231X.2006.01.003.

[16] 罗尘丁, 张娜, 蔡睿贤, 等. 氨吸收式动力/制冷复合循环的敏感性分析[J]. 中国电机工程学报, 2008, 28(17): 1-7. DOI:10.3321/j.issn:0258-8013.2008.17.001.

Outlines

/