Advances in New and Renewable Energy >
Solar Fuel Synthesis by Photochemical Conversion: A Brief Review
Received date: 2016-09-02
Revised date: 2016-10-31
Online published: 2016-12-28
Photovoltaic, photothermal and photochemical conversion are three main routes for solar energy utilization. In recent years, the research on solar fuel has attracted wide attention. In this paper, the research progress of solar fuel synthesis by photochemical conversion was reviewed briefly, including photocatalytic splitting of water to hydrogen, photocatalytic conversion of carbon dioxide to carbon monoxide. Finally, the prospect of solar hydrocarbon fuel production via photocatalytic Fischer-Tropsch synthesis from solar syngas was also put forward.
CHEN Ya-qian , WU Liang-peng , LI Juan , LI Xin-jun . Solar Fuel Synthesis by Photochemical Conversion: A Brief Review[J]. Advances in New and Renewable Energy, 2016 , 4(6) : 462 -467 . DOI: 10.3969/j.issn.2095-560X.2016.06.006
[1] HOUSE R L, HEYER C M, MEYER G J. et al. The university of north Carolina energy frontier research center: center for solar fuels[J]. ACS energy letters, 2016, 1(4): 872-874. DOI: 10.1021/acsenergylett.6b00141.
[2] 王建华, 吴季平, 徐伟. 太阳能应用研究进展[J]. 水电能源科学, 2007, 25(4): 156-158.
[3] WANG H S, HAO Y, KONG H. Thermodynamic study on solar thermochemical fuel production with oxygen permeation membrane reactors[J]. Energy research, 2015, 39(13): 1790-1799. DOI: 10.1002/er.3335.
[4] KODAMA T. High-temperature solar chemistry for converting solar heat to chemical fuels[J]. Progress in energy and combustion science, 2003, 29(6): 567-597. DOI: 10.1016/S0360-1285(03)00059-5.
[5] MARSHALL A, BØRRESEN B, HAGEN G, et al. Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers-reduced energy consumption by improved electrocatalysis[J]. Energy, 2007, 32(4): 431-436. DOI: 10.1016/j.energy.2006.07.014.
[6] 中国国防科技信息中心. SOLAR-JET研究组首次使用日光、水和二氧化碳合成煤油替代品[EB/OL]. (2014-05-28)[2015-04-29]. http://roll.sohu.com/20140528/n400162088.shtml.
[7] 科技日报社-中国科技网. 太阳能“光合”电池变二氧化碳为燃料[EB/OL]. (2016-07-29)[2016-07-30].
http://tech.163.com/16/0730/10/BT7DTEH700097U7T.html
[8] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. DOI:10.1038/238037a0.
[9] KUDO A. Recent progress in the development of visible light-driven powdered photocatalysts for water splitting[J]. International journal of hydrogen energy, 2007, 32(14): 2673-2678. DOI: 10.1016/j.ijhydene.2006.09.010.
[10] ZOU Z G, YE J H, SAYAMA K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature, 2001, 414(6864): 625-627. DOI:10.1038/414625a.
[11] MERKA O, RAISCH O, STEINBACH F, et al. Effects of nonstoichiometry and cocatalyst loading on the photocatalytic hydrogen production with (Y1.5Bi0.5)(1−x)Ti2O7−3x and (YBi)1−x Ti2O7−3x Pyrochlores[J]. Journal of the American ceramic society, 2013, 96(2): 634-642. DOI: 10.1111/jace.12013.
[12] YANG H H, LIU X R, ZHOU Z H, et al. Preparation of a novel Cd2Ta2O7 photocatalyst and its photocatalytic activity in water splitting[J]. Catalysis communications, 2013, 31: 71-75. DOI: 10.1016/j.catcom.2012.11.014.
[13] LIN K Y, MA B J, SU W G, et al. Improved photocatalytic hydrogen generation on Zn2GeO4 nanorods with high crystallinity[J]. Applied surface science, 2013, 286: 61-65. DOI: 1016/j.apsusc.2013.09.014.
[14] YAMANE S, KATO N, KOJIMA S, et al. Efficient solar water splitting with a composite “n-Si/p-CuI/n-i-p a-Si/n-p GaP/RuO2” semiconductor electrode[J]. Journal of physical chemistry C, 2009, 113(32): 14575-14581. DOI: 10.1021/jp904297v.
[15] 靳治良, 张晓杰, 吕功煊, 等. 曙红敏化TiO2光催化分解水制氢的研究[J]. 武汉理工大学学报, 2006, 28(S2): 58-63. DOI: 10.3321/j.issn:1671-4431.2006.z1.010.
[16] SREETHAWONG T, JUNBUA C, CHAVADE S. Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst[J]. Journal of power sources, 2009, 190(2): 513-524. DOI: 10.1016/j.jpowsour.2009.01.054.
[17] 李新军, 张玉媛. 一种光催化燃料电池分解水直接分离制氢的方法: 200910039641. 7[P]. 2009-05-21.
[18] LIU J, LIU Y, LIU N Y, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science, 2015, 347(6225): 970-974. DOI: 10.1126/science.aaa3145.
[19] ZHANG X, LIU Y, KANG Z H. 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting[J]. Applied Materials & Interfaces, 2014, 6(6): 4480-4489. DOI: 10.1021/am500234v.
[20] LIU E Z, KANG L M, YANG Y H, et al. Plasmonic Ag deposited TiO2 nano-sheet film for enhanced photocatalytic hydrogen production by water splitting[J]. Nanotechnology, 2014, 25(16): 165401. DOI: 10.1088/0957-4484/25/16/ 165401.
[21] ZHAO Z Y. Theoretical study of Pt cocatalyst loading on anatase TiO2(101) surface: from surface doping to interface forming[J]. Journal of physical chemistry C, 2014, 118(42): 24591-24602. DOI: 10.1021/jp508074e.
[22] LIAO L B, ZHANG Q H, SU Z H, et al. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst[J]. Nature nanotechnology, 2014, 9(1): 69-73. DOI:10.1038/ nnano.2013.272.
[23] ZHONG D K, SUN J W, INUMARU H, et al. Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes[J]. Journal of the American chemical society, 2009, 131(17): 6086-6087. DOI: 10.1021/ja9016478.
[24] LI J T, CUSHING S K, ZHENG P, et al. Plasmon- induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array[J]. Nature communications, 2013, 4: 2651. DOI: 10.1038/ ncomms3651.
[25] LONG L Z, YU X, WU L P, et al. Nano-CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination[J]. Nanotechnology, 2014, 25(3): 035603. DOI: 10.1088/ 0957-4484/25/3/035603.
[26] YANG X, WU L P, DU L, et al. Photocatalytic water splitting towards hydrogen production on gold nanoparticles (NPs) entrapped in TiO2 nanotubes[J]. Catalysis letters, 2015, 145(9): 1771-1777. DOI: 10.1007/ s10562-015-1568-6.
[27] SCHNEIDER J, BAHNEMANN D, YE J H, et al. Photocatalysis: fundamentals and perspectives[M]. Cambridge: Royal Society of Chemistry, 2016.
[28] LEE J W, GREENBAUM E, SAHA B C, et al. A new perspective on hydrogen production by photosynthetic water-splitting[C]//Symposium on fuels and chemicals from biomass, at the 211th national meeting of the American-Chemical-Society. New Orleans La, America, 1996: 209-222.
[29] ABE R, SAYAMA K, SUGIHARA H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-[J]. The journal of physical chemistry B, 2005, 109(33): 16052-16061. DOI: 10.1021/jp052848l.
[30] WANG Q, HISATOMI T, JIA Q X, et al. Scalable water splitting on particulate photocatalyst sheets with a solar- to-hydrogen energy conversion efficiency exceeding 1%[J]. Nature materials, 2016, 15(6): 611-615. DOI: 10.1038/nmat4589.
[31] HALMANN M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells[J]. Nature, 1978, 275(5676): 115-116. DOI: 10.1038/275115a0.
[32] INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638. DOI: 10.1038/277637a0.
[33] YU J G, JIN J, CHENG B, et al. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel[J]. Journal of materials chemistry A, 2014, 2(10): 3407-3416. DOI: 10.1039/C3TA14493C.
[34] CHEN X Y, ZHOU Y, LIU Q, et al. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light[J]. ACS applied materials and interfaces, 2012, 4(7): 3372-3377. DOI: 10.1021/am300661s.
[35] ZHOU Y, TIAN Z P, ZHAO Z Y, et al. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light[J]. ACS applied materials and interfaces, 2011, 3(9): 3594-3601. DOI: 10.1021/am2008147.
[36] LIU Q, ZHOU Y, KOU J H, et al. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel[J]. Journal of the American chemical society, 2010, 132(41): 14385-14387. DOI: 10.1021/ ja1068596.
[37] BAEISSA E S. Green synthesis of methanol by photocatalytic reduction of CO2 under visible light using a graphene and tourmaline co-doped titania nanocomposites[J]. Ceramics international, 2014, 40(8): 12431-12438. DOI: 10.1016/j.ceramint.2014.04.094.
[38] WANG P Q, BAI Y, LIU J Y, et al. One-pot synthesis of rutile TiO2 nanoparticle modified anatase TiO2 nanorods toward enhanced photocatalytic reduction of CO2 into hydrocarbon fuels[J]. Catalysis communications, 2012, 29: 185-188. DOI: 10.1016/j.catcom.2012.10.010.
[39] Tu W G, ZHOU Y, LIU Q, et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane[J]. Advanced functional materials, 2013, 23(14): 1743-1749. DOI: 10.1002/adfm.201202349.
[40] DE BRITO J F, ARAUJO A R, RAJESHWAR K et al. Photoelectrochemical reduction of CO2 on Cu/Cu2O films: product distribution and pH effects[J]. Chemical engineering journal, 2015, 264: 302-309. DOI: 10.1016/j.cej.2014.11.081.
[41] GUAN G Q, KIDA T, HARADA T, et al. Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight[J]. Applied catalysis A: general, 2003, 249(1): 11-18. DOI: 10.1016/S0926-860X(03)00205-9.
[42] NGUYEN T V, WU J C S. Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor[J]. Solar energy materials and solar cells, 2008, 92(8): 864-872. DOI: 10.1016/j.solmat.2008.02.010.
[43] LEHN J M, ZIESSEL R. Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation[J]. Proceedings of the national academy of sciences of the United States of America, 1982, 79(2): 701-704. DOI: 10.1073/pnas.79.2.701.
[44] ZIESSEL R, HAWECHER J, LEHN J M. Photogeneration of carbon monoxide and of hydrogen via simultaneous photochemical reduction of carbon dioxide and water by visible-light irradiation of organic solutions containing tris (2, 2′-bipyridine) ruthenium(II) and cobalt(II) species as homogeneous catalysts[J]. Helvetica chimica acta, 1986, 69(5): 1065-1084. DOI: 10.1002/hlca.19860690514.
[45] ISHIDA H, TERADA T, TANAKA K, et al. Photochemical carbon dioxide reduction catalyzed by bis(2,2'-bipyridine) dicarbonylruthenium(2+) using triethanolamine and 1-benzyl-1, 4-dihydronicotinamide as an electron donor[J]. Inorganic chemistry, 1990, 29(5): 905-911. DOI: 10.1021/ic00330a004.
[46] HORI H, JOHNSON F P A, KOIKE K, et al. Photochemistry of [Re(bipy)(CO)3(PPh3)]+ (bipy= 2,2’-bipyridine) in thepresence of triethanolamine associated with photoreductive fixation ofcarbon dioxide: participation of a chain reaction mechanism[J]. Journal of the chemical society, dalton transactions, 1997, 6(6): 1019-1024. DOI: 10.1039/A607058B.
[47] HORI H, JOHNSON F P A, KOIKE K, et al. Efficient photocatalytic CO2 reduction using [Re(bpy)(CO)3{P(OEt)3}]+[J]. Journal of photochemistry and photobiology A: chemistry, 1996, 96(1/3): 171-174. DOI: 1010-6030(95)04298-9.
[48] GRODKOWSKI J, BEHAR D, NETA P et al. Iron porphyrin-catalyzed reduction of CO2. photochemical and radiation chemical chemical studies[J]. Journal of physical chemistry A, 1997, 101(3): 248-254. DOI: 10.1021/jp9628139.
[49] TERAMURA K, OKUOKA S, TSUNEOKA H, et al. Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A=Li, Na, K)[J]. Applied catalysis B: environmental, 2010, 96(3/4): 565-568. DOI: 10.1016/j.apcatb.2010.03.021.
[50] ZHANG Q Y, LI Y, ACKERMAN E A, et al. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels[J]. Applied catalysis A: general, 2011, 400(1/2): 195-202. DOI: 10.1016/j.apcata.2011. 04.032.
[51] LI Y, WANG W N, ZHAN Z L, et al. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts[J]. Applied catalysis B: environmental, 2010, 100(1-2): 386-392. DOI: 10.1016/ j.apcatb.2010.08.015.
[52] LIU Q, ZHOU Y, MA Y, et al. Synthesis of highly crystalline In2Ge2O7(En) hybrid sub-nanowires with ultraviolet photoluminescence emissions and their selective photocatalytic reduction of CO2 into renewable fuel[J]. RSC advances, 2012, 2(8): 3247-3250. DOI: 10.1039/C2RA20186K.
[53] AN X Q, LI K F, TANG J W. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2[J]. ChemSusChem, 2014, 7(4): 1086-1093. DOI: 10.1002/cssc.201301194.
[54] CHEN L J, GUO Z G, WEI X G, et al. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with earth-abundant metal complexes. Selective production of CO vs HCOOH by switching of the metal Center[J]. Journal of the American chemical society, 2015, 137(34): 10918-10921. DOI: 10.1021/jacs. 5b06535.
[55] FISCHER F, TROPSCH H. The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen[J]. Brennstoff-chemie, 1923, 4: 276-285.
[56] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity[J]. ChemCatChem, 2010, 2(9): 1030-1058. DOI: 10.1002/cctc.201000071.
[57] 门卓武, 林泉, 吕毅军. 煤基费托合成催化剂活性组分的选择[J]. 神华科技, 2009, 7(5): 85-87, 93. DOI:10.3969/j.issn.1674-8492.2009.05.021.
[58] YU S Y, ZHANG T, XIE Y H, et al. Synthesis and characterization of iron-based catalyst on mesoporous titania for photo-thermal F-T synthesis[J]. International journal of hydrogen energy, 2015, 40(1): 870-877. DOI: 10.1016/j.ijhydene.2014.10.121.
[59] GUO X N, JIAO Z F, JIN G Q, et al. Photocatalytic Fischer-Tropsch synthesis on graphene-supported worm-like Ruthenium nanostructures[J]. ACS catalysis, 2015, 5(6): 3836-3840. DOI: 10.1021/acscatal.5b00697.
[60] 谢玮. 第65版《BP世界能源统计年鉴》发布: 2015能源市场: 供应充裕 需求放缓[J]. 中国经济周刊, 2016(7): 73-74.
[61] ISMAIL A A, BAHNEMANN D W. Photochemical splitting of water for hydrogen production by photocatalysis: A review[J]. Solar energy materials and solar cells, 2014, 128: 85-101. DOI: 10.1016/j.solmat. 2014.04.037.
/
〈 |
|
〉 |