Numerical Simulation of Catalytic Combustion of n-Butane and Analysis of Influencing Factors
Received date: 2016-12-29
Revised date: 2017-01-22
Online published: 2017-02-28
The catalytic combustion characteristics of n-butane/air mixture were investigated numerically by using Fluent with detailed surface reaction mechanism. This work is mainly focused on the effect of combustor wall thickness, thermal conductivity and convection heat transfer coefficient on combustion characteristic and flame stability. The results show that wall thickness will benefit horizontal heat transfer, leading to a more uniform temperature. Thermal conductivity has a significant effect on temperature uniformity and the convection heat transfer coefficient is the dominant factor on the heat loss. Large thermal conductivity is helpful for preheating the mixture and resulting in easier reaction. However, the increasing horizontal heat loss that comes along is against the combustion stability.
Key words: n-butane; catalytic combustion; heat transfer parameter; heat loss; flammable limit
YU Ya-wei , ZHONG Bei-jing . Numerical Simulation of Catalytic Combustion of n-Butane and Analysis of Influencing Factors[J]. Advances in New and Renewable Energy, 2017 , 5(1) : 1 -7 . DOI: 10.3969/j.issn.2095-560X.2017.01.001
[1] FERNANDEZ-PELLO A C. Micropower generation using combustion issues and approaches[J]. Proceedings of the combustion institute, 2002, 29(1): 883-899. DOI: 10.1016/S1540-7489(02)80113-4.
[2] RAIMONDEAU S, NORTON D G, VLACHOS D G, et al. Modeling of high-temperature microburners[J]. Proceedings of the combustion institute, 2002, 29(1): 901-907. DOI: 10.1016/S1540-7489(02)80114-6.
[3] DEUT SCHMANN O, SNHMIDT R, BEHRENDT F, et al. Numerical modeling of catalytic combustion[J]. Proc. Combust. Inst., 1996, 26: 1747-1754.
[4] VLACHOS D G, BUI P A. Catalytic ignition and extinction of hydrogen: comparison of simulations and experiments[J]. Surface science, 1996, 364(3): L625-L630.
[5] DEUTSCHMANN O, SCHWIEDEMOCH R, MAIER L I, et al. Natural gas conversion in monolithic catalysts: interaction of chemical reactions and transport phenomena[J]. Studies in surface science and catalysis, 2001, 136: 251-258. DOI: 10.1016/S0167-2991(01)80312-8.
[6] NORTON D G, WETZEL E D, VLACHOS D G. Thermal management in catalytic microreactors[J]. Industrial & engineering chemistry research, 2006, 45(1): 76-84. DOI: 10.1021/ie050674o.
[7] FEDERICI J A, WETZEL E D, GEIL B R, et al. Single channel and heat recirculation catalytic microburners: An experimental and computational fluid dynamics study[J]. Proceedings of the combustion institute, 2009, 32(2): 3011-3018. DOI: 10.1016/j.proci.2008.07.005.
[8] ZHONG B J, YANG F, YANG Q T. Catalytic combustion of n-C4H10 and DME in swiss-roll combustor with porous ceramics[J]. Combustion science and technology, 2012, 184(5): 573-584. DOI: 10.1080/00102202.2011. 651231.
[9] SESHADRI V, KAISARE N S. Simulation of hydrogen and hydrogen-assisted propane ignition in pt catalyzed microchannel[J]. Combustion and flame, 2010, 157(11): 2051-2062. DOI: 10.1016/j.combustflame.2010.04.005.
[10] MARUTA K, TAKEDA K, AHN J, et al. Extinction limits of catalytic combustion in microchannels[J]. Proceedings of the combustion institute, 2002, 29(1): 957-963. DOI: 10.1016/S1540-7489(02)80121-3.
[11] MARUTA K, TAKEDA K, DEUTSCHANN O. Catalytic combustion in microchannel for MEMS power generation[C]//The third Asia-Pacafic Conference on Combustion. Seoul, Korea, 2001.
[12] ZHONG B J, JIAO J. Numerical analysis of the catalytic combustion of premixed methane/air mixtures in microtubes[J]. Chemical engineering & technology, 2008, 31(9): 1342-1349. DOI: 10.1002/ceat.200700504.
[13] 钟北京, 焦健. 微通道内甲烷空气预混气的熄火极限[J]. 清华大学学报(自然科学版), 2007, 47(11): 2044-2047. DOI: 10.3321/j.issn:1000-0054.2007.11.028.
[14] 吴晟, 冉景煜, 杨德祥, 等. 微圆管壁面材料和厚度对甲烷催化着火的影响[J]. 工程热物理学报, 2014, 35(9): 1884-1888.
[15] DI BENEDETTO A, DI SARLI V, RUSSO G. Effect of geometry on the thermal behavior of catalytic micro-combustors[J]. Catalysis today, 2010, 155(1/2): 116-122. DOI: 10.1016/j.cattod.2009.01.048.
[16] 熊鹏飞, 钟北京, 杨帆. C1-C4在Pt催化剂上的多相反应机理[J]. 物理化学学报, 2011, 27(9): 2200-2208.
[17] NORTON D G, VLACHOS D G. Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures[J]. Chemical engineering science, 2003, 58(21): 4871-4882. DOI: 10.1016/j.ces.2002.12.005,
[18] ZHONG Beijing, YANG Fan. Characteristics of hydrogen-assisted catalytic ignition of n-butane/air mixtures[J]. International journal of hydrogen energy, 2012, 37(10): 8716-8723. DOI: 10.1016/j.ijhydene.2012. 02.042.
/
〈 |
|
〉 |