Welcome to visit Advances in New and Renewable Energy!

Synthesis and Characteristics of Lithium-Rich Manganese-Based Material Li[Li0.2Ni0.2Mn0.6]O2 by in Situ Template-Sacrificial Method

  • LIU Yan ,
  • TANG Dao-ping ,
  • ZHANG Qian-yu ,
  • ZHANG Ling-zhi
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-11-24

  Revised date: 2016-12-26

  Online published: 2017-02-28

Abstract

Li[Li0.2Ni0.2Mn0.6]O2 (LLO) nanoparticles with diffident morphologies were prepared by the in situ template- sacrificial method, sol-gel method and confinement method, respectively. The electrochemical performance data confirmed that the product prepared by in situ template-sacrificial method had the best specific capacity, cycle stability and rate performance. The improved electrochemical performance of this product is due to the following aspects: (1) the cavity in each hollow sphere can provide many extra active sites for the storage of Li+, which is beneficial for enhancing the specific capacity; (2) the hollow structure made of nanoparticles often has a larger surface area and a reduced effective diffusion distance for Li+, leading to improved rate capability; (3) the void space in hollow structures may buffer against the local volume change during the lithium insertion/extraction cycling, thus facilitating the structural stability of the electrode material and improving the cyclability.

Cite this article

LIU Yan , TANG Dao-ping , ZHANG Qian-yu , ZHANG Ling-zhi . Synthesis and Characteristics of Lithium-Rich Manganese-Based Material Li[Li0.2Ni0.2Mn0.6]O2 by in Situ Template-Sacrificial Method[J]. Advances in New and Renewable Energy, 2017 , 5(1) : 32 -39 . DOI: 10.3969/j.issn.2095-560X.2017.01.005

References

[1] 李伟善. 储能锂离子电池关键材料研究进展[J]. 新能源进展, 2013, 1(1): 95-105. DOI: 10.3969/j.issn.2095- 560X.2013.01.009.

[2] 宋文吉, 陈永珍, 吕杰, 等. 锂离子电池容量衰减机理研究进展[J]. 新能源进展, 2016, 4(5): 364-372. DOI: 10.3969/j.issn.2095-560X.2016.05.005.

[3] LUO J Y, XIONG H M, XIA Y Y. LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery[J]. Journal of physical chemistry C, 2008, 112(31): 12051-120517. DOI: 10.1021/jp800915f.

[4] JOHNSON C S, KIM J S, LEFIEF C, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3•(1−x)LiMn0.5Ni0.5O2 electrodes[J]. Electro- chemistry communications, 2004, 6(10): 1085-1091. DOI: 10.1016/j.elecom.2004.08.002.

[5] KIM J H, PARK C W, SUN Y K. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55−x/2]O2 cathode materials[J]. Solid state ionics, 2003, 164(1/2): 43-49. DOI: 10.1016/j.ssi.2003.08.003.

[6] KIM G Y, YI S B, PARK Y J, et al. Electrochemical behaviors of Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathode series (0<x<1) synthesized by sucrose combustion process for high capacity lithium ion batteries[J]. Materials research bulletin, 2008, 43(12): 3543-3552. DOI: 10.1016/j.materresbull.2008.01.011.

[7] LI J, KLÖEPSCH R, STAN M C, et al. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability[J]. Journal of power sources, 2011, 196(10): 4821-4825. DOI: 10.1016/j.jpowsour.2011.01.006.

[8] LU Z H, BEAULIEU L Y, DONABERGER R A, et al. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. Journal of the electrochemical society, 2002, 149(6): A778-A791. DOI: 10.1149/1.1471541.

[9] KANG S H, AMINE K. Synthesis and electrochemical properties of layer-structured 0.5Li(Ni0.5Mn0.5)O2- 0.5Li(Li1/3Mn2/3)O2 solid mixture[J]. Journal of power sources, 2003, 124(2): 533-537. DOI: 10.1016/S0378- 7753(03)00804-8.

[10] KANG S H, SUN Y K, AMINE K. Electrochemical and ex situ X-ray study of Li(Li0.2Ni0.2Mn0.6)O2 cathode material for Li secondary batteries[J]. Electrochemical and solid state letters, 2003, 6(9): A183-A186. DOI: 10.1149/1.1594411.

[11] AMMUNDSEN B, PAULSEN J. Novel lithium-ion cathode materials based on layered manganese oxides[J]. Advanced materials, 2001, 13(12/13): 943-956. DOI: 10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO;2-J.

[12] THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of materials chemistry, 2007, 17(30): 3112-3125. DOI: 10.1039/B702425H.

[13] JOHNSON C S, LI Naichao, LEFIEF C, Thackeray MM. Anomalous capacity and cycling stability of xLi2MnO3•(1-x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50°C[J]. Electrochemistry commu- nications, 2007, 9(4): 787-795. DOI: 10.1016/j.elecom. 2006.11.006.

[14] KANG S H, THACKERAY M M. Stabilization of xLi2MnO3•(1-x) LiMO2 electrode surfaces (M=Mn, Ni, Co) with mildly acidic, fluorinated solutions[J]. Journal of the electrochemical society, 2008, 155(4): A269-A275. DOI: 10.1149/1.2834904.

[15] JOHNSON C S, LI NAICHAO, LEFIEF C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3•(1-x)LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7)[J]. Chemistry of materials, 2008, 20(19): 6095-6106. DOI: 10.1021/cm801245r.

[16] WANG Q Y, LIU J, MURUGAN A V, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability[J]. Journal of materials chemistry, 2009, 19(28): 4965-4972. DOI: 10.1039/B823506F.

[17] LIU J, REEJA-JAYAN B, MANTHIRAM A. Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathodes[J]. Journal of physical chemistry C, 2010, 114(20): 9528-9533. DOI: 10.1021/jp102050s.

[18] PARK S H, SUN Y K. Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275-x/2)AlxMn(0.575-x/2)]O2 materials prepared by sol–gel method[J]. Journal of power sources, 2003, 119-121: 161-165. DOI: 10.1016/ S0378-7753(03)00171-X.

[19] JIAO L F, ZHANG M, YUAN H T, et al. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx ]O2 (x=0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries[J]. Journal of power sources, 2007, 167(1): 178-184. DOI: 10.1016/j.jpowsour.2007.01.070.

[20] JIANG J, EBERMAN K W, KRAUSEB L J, et al. Structure, electrochemical properties, and thermal stability studies of Li[Ni0.2Co0.6Mn0.2]O2[J]. Journal of the electrochemical society, 2005, 152(9): A1874-A1878.

[21] LIM J H, BANG H, LEE K S, et al. Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3 Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries[J]. Journal of power sources, 2009, 189(1): 571-575. DOI: 10.1016/j.jpowsour.2008.10.035.

[22] DENG H X, BELHAROUAK I, SUN Y K, et al. LixNi0.25Mn0.75Oy (0.5 ≤x≤2, 2≤y≤2.75) compounds for high-energy lithium-ion batteries[J]. Journal of materials chemistry, 2009, 19(26): 4510-4516. DOI: 10.1039/ B904098F.

[23] TABUCHI M, NABESHIMA Y, ADO K, et al. Material design concept for Fe-substituted Li2MnO3-based positive electrodes[J]. Journal of power sources, 2007, 174(2): 554-559. DOI: 10.1016/j.jpowsour.2007.06.247.

[24] WEI X, ZHANG S C, HE L, et al. Structure, morphology and electrochemical properties of Li[Li0.2Co0.4Mn0.4]O2 cathode material synthesized by a simple hydrothermal method[J]. International journal of electrochemical science, 2013, 8(2): 1885-1894.

[25] JIANG Y, YANG Z, LUO W, et al. Hollow 0.3Li2MnO3•0.7LiNi0.5Mn0.5O2 microspheres as a high- performance cathode material for lithium-ion batteries[J]. Physical chemistry chemical physics, 2013, 15(8): 2954-2960. DOI: 10.1039/c2cp44394e.

[26] FERRREIRA A, ROCHA J G, ANSÓN-CASAOS A, et al. Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications[J]. Sensors and actuators A: physical, 2012, 178: 10-16. DOI: 10.1016/j.sna.2012.01.041.

[27] SHAO D, TANG D P, YANG J W, et al. Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries[J]. Journal of power sources, 2015, 297: 344-350. DOI: 10.1016/ j.jpowsour.2015.08.037.

[28] SON D H, HUGHES S M, YIN Y D, et al. Cation exchange reactions in ionic nanocrystals[J]. Science, 2004, 306(5698): 1009-1012. DOI: 10.1002/chin.200508244.

[29] KNAPP M, BAEHTZ C, EHRENBERG H, et al. The synchrotron powder diffractometer at beamline B2 at HASYLAB/DESY: status and capabilities[J]. Journal of synchrotron radiation, 2004, 11: 328-334.

[30] JOHNSON C S, KIM J S, KROPF A J, et al. Structural and electrochemical evaluation of (1−x)Li2TiO3•(x)LiMn0.5Ni0.5O2 electrodes for lithium batteries[J]. Journal of power sources, 2003, 119-121)-: 139-144. DOI: 10.1016/S0378- 7753(03)00143-5.

[31] WU Y, MANTHIRAM A. High capacity, surface-modified layered Li[Li(1−x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss[J]. Electrochemical and solid-state letters, 2006, 9(5): A221-A224. DOI: 10.1149/ 1.2180528.

[32] WEST W C, STANIEWICZ R J, MA C, et al. Implications of the first cycle irreversible capacity on cell balancing for Li2MnO3-LiMO2 (M=Ni, Mn, Co) Li-ion cathodes[J]. Journal of power sources, 2011, 196(22): 9696-9701. DOI: 0.1016/j.jpowsour.2011.07.050.

[33] THACKERAY M M, JOHNSON C S, VAUGHEY J T, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries[J]. Journal of materials chemistry, 2005, 15(23): 2257-2267. DOI: 10.1039/B417616M.

[34] ARMSTRONG A R, HOLZAPFEL M, NOVÁK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American chemical society, 2006, 128(26): 8694-8698. DOI: 10.1021/ja062027+.

Outlines

/