Advances in New and Renewable Energy >
Border Shadow Distribution of BIPV/T System and Its Influence on Comprehensive Photovoltaic/Thermal Performance
Received date: 2017-01-27
Revised date: 2017-02-25
Online published: 2017-04-28
The air insulation layer in the building integrated photovoltaic/thermal (BIPV/T) system can improve the photothermal efficiency. But the support frame will form a shadow on the board core, and the shadow will affect the overall performance of BIPV/T. In this paper, two-dimensional radiation field model, heat transfer model and electrical model are established. The shadow distribution and the effect on the photovoltaic/thermal performance of BIPV/T are explored. Results indicate: taking the Beijing area as an example, the border shadow of the system are obvious and distributed regularly throughout the year. For the whole year, the shadow has little effect on the photothermal performance of the system, and the maximum daily increase/loss of photothermal efficiency is 0.49%. The effect of shadow on the photovoltaic performance of the system is significant, and the maximum loss of the average photovoltaic efficiency is 13.19%. The monthly average power loss due to shadows ranged from 0.1% to 13.2%.
LI Jun-fei , WANG Yun-yun , PEI Gang . Border Shadow Distribution of BIPV/T System and Its Influence on Comprehensive Photovoltaic/Thermal Performance[J]. Advances in New and Renewable Energy, 2017 , 5(2) : 81 -90 . DOI: 10.3969/j.issn.2095-560X.2017.02.001
[1] MATUSKA T. Simulation study of building integrated solar liquid PV-T collectors[J]. International journal of photoenergy, 2012, 2012, 686393. DOI: 10.1155/2012/ 686393.
[2] PANTIC S, CANDANEDO L, ATHIENITIS A K. Modeling of energy performance of a house with three configurations of building-integrated photovoltaic/thermal systems[J]. Energy and buildings, 2010, 42(10): 1779-1789. DOI: 10.1016/j.enbuild.2010.05.014.
[3] JIE J, WEI H, LAM H N. The annual analysis of the power output and heat gain of a PV-Wall with different integration mode in Hong Kong[J]. Solar energy materials and solar cells, 2002, 71(4): 435-448. DOI: 10.1016/S0927-0248(01)00098-8.
[4] 何伟, 季杰. 光伏光热建筑一体化对建筑节能影响的理论研究[J]. 暖通空调, 2003, 33(6): 8-11. DOI: 10.3969/j.issn.1002-8501.2003.06.003.
[5] CHOW T T, HAND J W, STRACHAN P A. Building-integrated photovoltaic and thermal applications in a subtropical hotel building[J]. Applied thermal engineering, 2003, 23(16): 2035-2049. DOI: 10.1016/ S1359-4311(03)00183-2.
[6] CHOW T T, HE W, JI J. An experimental study of façade-integrated photovoltaic/water-heating system[J]. Applied thermal engineering, 2007, 27(1): 37-45. DOI: 10.1016/j.applthermaleng.2006.05.015.
[7] 季杰, 韩俊, 周天泰, 等. 对光伏热水墙体光电光热性能的数值模拟研究[J]. 太阳能学报, 2006, 27(11): 1089-1096. DOI: 10.3321/j.issn:0254-0096.2006.11.004.
[8] 季杰, 韩崇巍, 陆剑平, 等. 扁盒式太阳能光伏热水一体墙的理论研究[J]. 中国科学技术大学学报, 2007, 37(1): 46-52. DOI: 10.3969/j.issn.0253-2778.2007.01.009.
[9] LEE H M, YOON J H, KIM S C, et al. Operational power performance of south-facing vertical BIPV window system applied in office building[J]. Solar energy, 2016. DOI: 10.1016/j.solener.2016.07.056.
[10] ARIHO D. Study of the shading effects on photovoltaic (PV) modules in building integrated photovoltaics (BIPV)[D]. Cataluña: Universitat Politècnica de Catalunya, 2013.
[11] FAN J, KHAING H H, LIANG Y J. Performance of BIPV systems under shadows[C]//Proceedings of 2012 International Congress on Informatics, Environment, Energy and Applications. Singapore: IACSIT Press, 2012.
[12] VAN DER BORG N J C M, JANSEN M J. Energy loss due to shading in a BIPV application[C]//Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion. Osaka, Japan: IEEE, 2003: 2220-2222.
[13] 杨金焕. 太阳能光伏发电应用技术[M]. 2版. 北京: 电子工业出版社, 2013.
[14] CHOW T T. Performance analysis of photovoltaic- thermal collector by explicit dynamic model[J]. Solar energy, 2003, 75(2): 143-152. DOI: 10.1016/j.solener. 2003.07.001.
[15] GANG P, HUIDE F, TAO Z, et al. A numerical and experimental study on a heat pipe PV/T system[J]. Solar energy, 2011, 85(5): 911-921. DOI: 10.1016/j.solener. 2011.02.006.
[16] DUFFIE J A, BECKMAN W A. Solar engineering of thermal processes[M]. 2nd ed. New York: John Wiley & Sons, 1991.
[17] BERGMAN T L, INCROPERA F P, LAVINE A S. Fundamentals of heat and mass transfer[M]. 6th ed. New York: John Wiley & Sons, 2007.
[18] 汪云云. 不均匀温度和辐照分布对太阳能PV/T系统中光电性能影响的研究[D]. 合肥: 中国科学技术大学, 2015: 19-36.
[19] KLEIN S A, THEILACKER J C. An algorithm for calculating monthly-average radiation on inclined surfaces[J]. Journal of solar energy engineering, 1981, 103(1): 29-33. DOI: 10.1115/1.3266201.
/
〈 |
|
〉 |