Advances in New and Renewable Energy >
Numerical Study on Filtration Combustion in a Porous Micro-Combustor
Received date: 2017-01-28
Revised date: 2017-03-22
Online published: 2017-04-28
A CFD study on fundamental flame characteristics of premixed hydrogen-air combustion in a planar porous micro-combustor is carried out by using one-temperature model and two-temperature model. The differences of the results of two calculation models and the suitable conditions of one-temperature model are discussed. The numerical results indicate that the one-temperature model gives a lower flame temperature and a closer flame position to the upstream than the two-temperature counterpart. The differences of flame temperature and position between two models reduce with the decrease of ks and the increase of ?.
LI Qing-qing , LI Jun , CHEN Jin-xing . Numerical Study on Filtration Combustion in a Porous Micro-Combustor[J]. Advances in New and Renewable Energy, 2017 , 5(2) : 97 -103 . DOI: 10.3969/j.issn.2095-560X.2017.02.003
[1] YOSHIO Y, KIYOSHI S, RYOZO E. Analytical study of the structure of radiation controlled flame[J]. International journal of heat and mass transfer, 1988, 31(2): 311-319. DOI: 10.1016/0017-9310(88)90014-2.
[2] HOFFMANN J G, ECHIGO R, YOSHIDA H, et al. Experimental study on combustion in porous media with a reciprocating flow system[J]. Combustion and flame, 1997, 111(1/2): 32-46. DOI: 10.1016/S0010-2180(97) 00099-0.
[3] SATHE S B, KULKARNI M R, PECK R E, et al. An experimental and theoretical study of porous radiant burner performance[C]//Proceedings of the 23rd Symposium (International) on Combustion. Pittsburgh, PA: The Combustion Institute, 1990: 1011-1018.
[4] YOUNIS L B, VISKANTA R. Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam[J]. International journal of heat and mass transfer, 1993, 36(6): 1425-1434. DOI: 10.1016/S0017-9310(05)80053-5.
[5] ROY N C, NAKAMURA Y. Investigation of unsteady behaviors of forward and opposed flow combustion of solid fuel[J]. Combustion and flame, 2016, 163: 517-531. DOI: 10.1016/j.combustflame.2015.10.030.
[6] DUFFY N T M, EATON J A. Investigation of factors affecting channelling in fixed-bed solid fuel combustion using CFD[J]. Combustion and flame, 2013, 160(10): 2204-2220. DOI: 10.1016/j.combustflame.2013.04.015.
[7] ZHDANOK S, KENNEDY L A, KOESTER G. Superadiabatic combustion of methane air mixtures under filtration in a packed bed[J]. Combustion and flame, 1995, 100(1/2): 221-231. DOI: 10.1016/0010- 2180(94)00064-Y.
[8] ZHANG J C, CHENG L M, ZHENG C H, et al. Numerical studies on the inclined flame front break of filtration combustion in porous media[J]. Energy & fuels, 2013, 27(8): 4969-4976. DOI: 10.1021/ef400745s.
[9] HANAMURA K, ECHIGO R, ZHDANOK S A. Superadiabatic combustion in a porous medium[J]. International journal of heat and mass transfer, 1993, 36(13): 3201-3209. DOI: 10.1016/0017-9310(93)90004-P.
[10] MOHAMAD A A, RAMADHYANI S, VISKANTA R. Modelling of combustion and heat transfer in a packed bed with embedded coolant tubes[J]. International journal of heat and mass transfer, 1994, 37(8): 1181-1191. DOI: 10.1016/0017-9310(94)90204-6.
[11] KABILOV M M. Instability of the front of filtration combustion of gases in the nonadiabatic regime[J]. Combustion, explosion, and shock waves, 2012, 48(2): 136-143. DOI: 10.1134/S0010508212020037.
[12] CHUA K J, YANG W M, ONG W J. Fundamental experiment and numerical analysis of a modular microcombustor with silicon carbide porous medium[J]. Industrial & engineering chemistry research, 2012, 51(18): 6327-6339. DOI:10.1021/ie203017g.
[13] 马世虎. 往复流动下预混合气体在多孔介质中超绝热燃烧的数值模拟[D]. 大连: 大连理工大学, 2004. DOI: 10.7666/d.y666606.
[14] LI J, WANG Y T, CHEN J X, et al. Experimental study on standing wave regimes of premixed H2–air combustion in planar micro-combustors partially filled with porous medium[J]. Fuel, 2016, 167: 98-105. DOI: 10.1016/j.fuel.2015.11.033.
[15] LI J, WANG Y T, CHEN J X, et al. Effects of combustor size and filling condition on stability limits of premixed H2-air flames in planar microcombustors[J]. AIChE journal, 2015, 61(8): 2571-2580. DOI: 10.1002/aic.14855.
[16] LI J, LI Q Q, WANG Y T, et al. Fundamental flame characteristics of premixed H2-air combustion in a planar porous micro-combustor[J]. Chemical engineering journal, 2016, 283: 1187-1196. DOI: 10.1016/j.cej.2015. 08.056.
[17] YANG H L, MINAEV S, GEYNCE E, et al. Filtration combustion of methane in high-porosity micro-fibrous media[J]. Combustion science and technology, 2009, 181(4): 654-669. DOI: 10.1080/00102200802646748.
[18] BARRA A J, ELLZEY J L. Heat recirculation and heat transfer in porous burners[J]. Combustion and flame, 2004, 137(1/2): 230-241. DOI: 10.1016/j.combustflame. 2004.02.007.
[19] LI J, LI Q Q, SHI J R, et al. Numerical study on heat recirculation in a porous micro-combustor[J]. Combustion and flame, 2016, 171: 152-161. DOI: 10.1016/j. combustflame.2016.06.007.
[20] KUWAHARA F, SHIROTA M, NAKAYAMA A. A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media[J]. International journal of heat and mass transfer, 2001, 44(6): 1153-1159. DOI: 10.1016/ S0017-9310(00)00166-6.
/
〈 |
|
〉 |