Advances in New and Renewable Energy >
Preparation and Thermal Properties of SiO2 Modified Graphene -Paraffin Composite Phase Change Emulsions
Received date: 2017-02-22
Revised date: 2017-03-27
Online published: 2017-04-28
A phase change composite emulsion containing 30wt% paraffin and 0.05 ~ 0.15wt% SiO2 modified graphene was prepared. The thermal conductivity, latent heat and thermal cycling stability of the composite emulsions were studied. The results show that the thermal conductivities increased with the increase of mass fractions of SiO2 modified graphene. It increased about 20% with a mass fraction 0.15% of SiO2 modified graphene. The presence of modified graphene has little effect on the values of latent heat and phase change temperatures. The thermal cycling stabilities of the composite emulsions are very good. The results indicate that the prepared SiO2 modified graphene-paraffin composite phase change emulsions are attractive candidates for heat storage applications.
YANG Zhi-tao , ZHANG Jun-qiang , ZONG Dong-dong , WANG Hua-zhi . Preparation and Thermal Properties of SiO2 Modified Graphene -Paraffin Composite Phase Change Emulsions[J]. Advances in New and Renewable Energy, 2017 , 5(2) : 110 -116 . DOI: 10.3969/j.issn.2095-560X.2017.02.005
[1] AKGÜN M, AYDIN O, KAYGUSUZ K. Thermal energy storage performance of paraffin in a novel tube-in-shell system[J]. Applied thermal engineering, 2008, 28(5/6): 405-413. DOI: 10.1016/j.applthermaleng.2007.05.013.
[2] SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and sustainable energy reviews, 2009, 13(2): 318-345. DOI: 10.1016/j.rser.2007.10.005.
[3] ZHANG P, MA Z W, WANG R Z. An overview of phase change material slurries: MPCS and CHS[J]. Renewable and sustainable energy reviews, 2009, 14(2): 598-614. DOI: 10.1016/j.rser.2009.08.015.
[4] ALI FAZILATI M A, ALEMRAJABI A A. Phase change material for enhancing solar water heater, an experimental approach[J]. Energy conversion and management, 2013, 71: 138-145. DOI: 10.1016/j.enconman.2013.03.034.
[5] AKGÜN M, AYDIN O, KAYGUSUZ K. Experimental study on melting/solidification characteristics of a paraffin as PCM[J]. Energy conversion and management, 2007, 48(2): 669-678. DOI: 10.1016/j.enconman.2006.05.014.
[6] SHAO J J, DARKWA J, KOKOGIANNAKIS G. Review of phase change emulsions (PCMEs) and their applications in HVAC systems[J]. Energy and buildings, 2015, 94: 200-217. DOI: 10.1016/j.enbuild.2015.03.003.
[7] 毛凌波, 梁志彬, 林敬堂, 等. 潜热输送相变乳状液的制备与性能[J]. 储能科学与技术, 2014, 3(2): 128-132. DOI: 10.3969/j.issn.2095-4239.2014.02.006.
[8] 邹得球, 肖睿, 冯自平. 石蜡乳状液潜热输送材料的研究进展[J]. 化工新型材料, 2012, 40(1): 39-40, 87. DOI: 10.3969/j.issn.1006-3536.2012.01.012.
[9] 郭亚飞, 郑文伟, 程海峰, 等. 石蜡类功能热流体的研究进展[J]. 新技术新工艺, 2012(5): 52-56. DOI: 10.3969/j.issn.1003-5311.2012.05.016.
[10] INABA H, MORITA S I. Cold heat-release characteristics of phase-change emulsion by air-emulsion direct-contact heat exchange method[J]. International journal of heat and mass transfer, 1996, 39(9): 1797-1803. DOI: 10.1016/0017-9310(95)00291-X.
[11] HUANG L, DOETSCH C, POLLERBERG C. Low temperature paraffin phase change emulsions[J]. International journal of refrigeration, 2010, 33(8): 1583-1589. DOI: 10.1016/j.ijrefrig.2010.05.016.
[12] CHEN B J, WANG X, ZHANG Y P, et al. Experimental research on laminar flow performance of phase change emulsion[J]. Applied thermal engineering, 2006, 26(11/12): 1238-1245. DOI: 10.1016/j.applthermaleng. 2005.10.040.
[13] ZOU D Q, FENG Z P, XIAO R, et al. Preparation and flow characteristic of a novel phase change fluid for latent heat transfer[J]. Solar energy materials and solar cells, 2010, 94(12): 2292-2297. DOI: 10.1016/j.solmat. 2010.07.028.
[14] 毛凌波, 梁志彬, 林敬堂, 等. 纳米粒子与石蜡乳状液复合多相功能热流体的制备与性能[J]. 新能源进展, 2013, 1(3): 257-262. DOI: 10.3969/j.issn.2095-560X. 2013.03.009.
[15] WANG F X, LIU J, FANG X M, et al. Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance[J]. Solar energy materials and solar cells, 2016, 147: 101-107. DOI: 10.1016/j.solmat.2015.12.013.
[16] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI: 10.1126/ science.1102896.
[17] HUMMERS Jr W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American chemical society, 1958, 80(6): 1339. DOI: 10.1021/ja01539a017.
[18] 焦学瞬, 贺明波. 乳状液与乳化技术新应用[M]. 北京: 中国工业出版社, 2006: 58-67.
[19] KONIOS D, STYLIANAKIS M M, STRATAKIS E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide[J]. Journal of colloid and interface science, 2014, 430: 108-112. DOI: 10.1016/j.jcis.2014.05.033.
[20] LI X, CHEN Y, MO S P, et al. Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid[J]. Thermochimica acta, 2014, 595: 6-10. DOI: 10.1016/ j.tca.2014.09.006.
/
〈 |
|
〉 |