Advances in New and Renewable Energy >
Application of Energy Storage Technology in Distributed Energy System for Cooling-Heating-Power Combined Cycle Driven by Solar Energy
Received date: 2016-12-07
Revised date: 2017-02-15
Online published: 2017-04-28
Distributed energy system for cooling-heating-power combined cycle driven by solar energy is an important development direction of renewable energy and distributed energy, while energy storage technology is the key to solve problems of grid stability and supply & demand imbalance. In this paper, the development of energy storage technology is introduced, and the application and function of energy storage system in each subsystem are analyzed according to the system structure and operation control. The characteristics and differences of operation mode and control strategy are also discussed, to provide reference for the popularization of distributed energy system for cooling-heating-power combined cycle driven by solar energy and the applications of energy storage technology.
YANG Chang-ru , LIN Shi-li , SONG Wen-ji , FENG Zi-ping . Application of Energy Storage Technology in Distributed Energy System for Cooling-Heating-Power Combined Cycle Driven by Solar Energy[J]. Advances in New and Renewable Energy, 2017 , 5(2) : 127 -135 . DOI: 10.3969/j.issn.2095-560X.2017.02.008
[1] 戴雨辰, 陈飞, 李宏顺, 等. 太阳能驱动的冷热电联供系统研究进展[J]. 武汉工程大学学报, 2015, 37(9): 68-78. DOI: 10.3969/j.issn.1674-2869.2015.09.012.
[2] MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage; technology update[J]. Renewable and sustainable energy reviews, 2014, 33: 532-545. DOI: 10.1016/j.rser.2014.01.068.
[3] 田军, 朱永强, 陈彩虹. 储能技术在分布式发电中的应用[J]. 电气技术, 2010(8): 28-32. DOI: 10.3969/j.issn. 1673-3800.2010.08.008.
[4] 程华, 徐政. 分布式发电中的储能技术[J]. 高压电器, 2003, 39(3): 53-56. DOI: 10.3969/j.issn.1001-1609.2003. 03.021.
[5] DECHANUPAPRITTHA S, SAKAMOTO N, HONGESOMBUT K, et al. Design and analysis of robust SMES controller for stability enhancement of interconnected power system taking coil size into consideration[J]. IEEE transactions on applied superconductivity, 2009, 19(3): 2019-2022. DOI: 10.1109/TASC.2009.2018492.
[6] JUNG H Y, KIM A R, KIM J H, et al. A study on the operating characteristics of SMES for the dispersed power generation system[J]. IEEE transactions on applied superconductivity, 2009, 19(3): 2028-2031. DOI: 10.1109/TASC.2009.20184953.
[7] THOUNTHONG P, RAEL S, DAVAT B. Analysis of supercapacitor as second source based on fuel cell power generation[J]. IEEE transactions on energy conversion, 2009, 24(1): 247-255. DOI: 10.1109/TEC.2008.2003216.
[8] 鲁鸿毅, 何奔腾. 超级电容器在微型电网中的应用[J]. 电力系统自动化, 2009, 33(2): 87-91. DOI: 10.3321/ j.issn:1000-1026.2009.02.020.
[9] TIAN Y, ZHAO C Y. A review of solar collectors and thermal energy storage in solar thermal applications[J]. Applied energy, 2013, 104: 538-553. DOI: 10.1016/j. apenergy.2012.11.051.
[10] 李永亮, 金翼, 黄云, 等. 储热技术基础(I)——储热的基本原理及研究新动向[J]. 储能科学与技术, 2013, 2(1): 69-72. DOI: 10.3969/j.issn.2095-4239.2013.01.007.
[11] 韩瑞端, 王沣浩, 郝吉波. 高温蓄热技术的研究现状及展望[J]. 建筑节能, 2011, 39(9): 32-38. DOI: 10.3969/j.issn.1673-7237.2011.09.009.
[12] ZALBA B, MARI?N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied thermal engineering, 2003, 23(3): 251-283. DOI: 10.1016/S1359-4311(02)00192-8.
[13] KENISARIN M, MAHKAMOV K. Solar energy storage using phase change materials[J]. Renewable and sustainable energy reviews, 2007, 11(9): 1913-1965. DOI: 10.1016/j.rser.2006.05.005.
[14] 叶锋, 曲江兰, 仲俊喻, 等. 相变储热材料研究进展[J]. 过程工程学报, 2010, 10(6): 1231-1241.
[15] LEWIS N S, CRABTREE G, NOZIK A J, et al. Basic research needs for solar energy utilization. Report of the basic energy sciences workshop on solar energy utilization, April 18-21, 2005[R]. US Department of Energy Office of Basic Energy Science, 2005.
[16] WANG J F, DAI Y P, GAO L, et al. A new combined cooling, heating and power system driven by solar energy[J]. Renewable energy, 2009, 34(12): 2780-2788. DOI: 10.1016/j.renene.2009.06.010.
[17] WANG J F, ZHAO P, NIU X Q, et al. Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy[J]. Applied energy, 2012, 94: 58-64. DOI: 10.1016/j.apenergy.2012. 01.007.
[18] 苏亚欣, 费正定, 杨翔翔. 太阳能冷热电联供分布式能源系统的研究[J]. 能源工程, 2004(5): 24-27. DOI: 10.3969/j.issn.1004-3950.2004.05.006.
[19] 郭栋, 隋军, 金红光. 基于太阳能甲醇分解的冷热电联产系统[J]. 工程热物理学报, 2009, 30(10): 1621-1624. DOI: 10.3321/j.issn:0253-231X.2009.10.001.
[20] BOYAGHCHI F A, HEIDARNEJAD P. Thermodynamic analysis and optimisation of a solar combined cooling, heating and power system for a domestic application[J]. International journal of exergy, 2015, 16(2): 139-168. DOI: 10.1504/IJEX.2015.068216.
[21] Bopp G, Gabler H, Preiser K, et al. Energy storage in photovoltaic stand-alone energy supply systems[J]. Progress in photovoltaics: research and applications, 1998, 6(4): 271-291. DOI: 10.1002/(SICI)1099-159X (199807/08)6:4<271::AID-PIP223>3.0.CO;2-P.
[22] TOLEDO O M, FILHO D O, DINIZ A S A C. Distributed photovoltaic generation and energy storage systems: a review[J]. Renewable and sustainable energy reviews, 2010, 14(1): 506-511. DOI: 10.1016/j.rser.2009. 08.007.
[23] 陈维, 沈辉, 邓幼俊. 太阳能光伏应用中的储能系统研究[J]. 蓄电池, 2006, 43(1): 21-27. DOI: 10.3969/j. issn.1006-0847.2006.01.005.
[24] DINCER I. Evaluation and selection of energy storage systems for solar thermal applications[J]. International journal of energy research, 1999, 23(12): 1017-1028. DOI: 10.1002/(SICI)1099-114X(19991010)23:12<1017:: AID-ER535>3.0.CO;2-Q.
[25] 胡学浩. 分布式发电与微型电网技术[J]. 电气时代, 2008(12): 77-78. DOI: 10.3969/j.issn.1000-453X.2008. 12.029.
[26] BAROTE L, WEISSBACH R, TEODORESCU R, et al. Stand-alone wind system with Vanadium Redox Battery energy storage[C]//Proceedings of the 11th International Conference on Optimization of Electrical and Electronic Equipment. Brasov: IEEE, 2008: 407-412. DOI: 10.1109/OPTIM.2008.4602441.
[27] 王健强. 第五讲: 并网光伏发电系统[J]. 电力电子, 2009(4): 45-49.
[28] 林汝谋, 金红光, 蔡睿贤. 以燃气轮机为核心的多功能能源系统基本形式与构成[J]. 燃气轮机技术, 2006, 19(1): 1-10, 29. DOI: 10.3969/j.issn.1009-2889.2006.01. 001.
[29] 黄晟辉, 赵大军, 马银龙. 太阳能跨季节地下储热技术[J]. 煤气与热力, 2010, 30(12): 29-31. DOI: 10.3969/ j.issn.1000-4416.2010.12.009.
[30] GAO L H, ZHAO J, TANG Z P. A review on borehole seasonal solar thermal energy storage[J]. Energy procedia, 2015, 70: 209-218. DOI: 10.1016/j.egypro. 2015.02.117.
[31] XU J, WANG R Z, LI Y. A review of available technologies for seasonal thermal energy storage[J]. Solar energy, 2014, 103: 610-638. DOI: 10.1016/j. solener.2013.06.006.
[32] AGYARKO L B, MANSOORI G A. Solar absorption cooling with alkanes as phase change energy storage medium[C]//Proceedings of AIChE Spring National Meeting. Chicago, IL: AIChE, 2011.
[33] 赵明海, 洪仁龙, 陶海臣, 等. 溴化锂吸收式制冷机在太阳能领域的应用与前景[J]. 流体机械, 2014, 42(6): 84-86, 40. DOI: 10.3969/j.issn.1005-0329.2014.06.018.
[34] 路宾, 郑瑞澄, 李忠, 等. 太阳能建筑应用技术研究现状及展望[J]. 建筑科学, 2013, 29(10): 20-25. DOI: 10.3969/j.issn.1002-8528.2013.10.004.
[35] ROBERTS B P, SANDBERG C. The role of energy storage in development of smart grids[J]. Proceedings of the IEEE, 2011, 99(6): 1139-1144. DOI: 10.1109/jproc. 2011.2116752.
[36] BLUDSZUWEIT H, DOMINGUEZ-NAVARRO J A. A probabilistic method for energy storage sizing based on wind power forecast uncertainty[J]. IEEE transactions on power systems, 2011, 26(3): 1651-1658. DOI: 10.1109/ TPWRS.2010.2089541.
[37] WADE N S, TAYLOR P C, LANG P D, et al. Evaluating the benefits of an electrical energy storage system in a future smart grid[J]. Energy policy, 2010, 38(11): 7180-7188. DOI: 10.1016/j.enpol.2010.07.045.
[38] SWIDER D J. Compressed air energy storage in an electricity system with significant wind power generation[J]. IEEE transactions on energy conversion, 2007, 22(1): 95-102. DOI: 10.1109/TEC.2006.889547.
[39] HARTIKAINEN T, MIKKONEN R, LEHTONEN J. Environmental advantages of superconducting devices in distributed electricity-generation[J]. Applied energy, 2007, 84(1): 29-38. DOI: 10.1016/j.apenergy.2006.04.011.
[40] 彭思敏, 曹云峰, 蔡旭. 大型蓄电池储能系统接入微电网方式及控制策略[J]. 电力系统自动化, 2011, 35(16): 38-43.
[41] RYDH C J, SANDÉN B A. Energy analysis of batteries in photovoltaic systems. Part I: performance and energy requirements[J]. Energy conversion and management, 2005, 46(11/12): 1957-1979. DOI: 10.1016/j.enconman. 2004.10.003.
[42] ZHOU H H, BHATTACHARYA T, TRAN D, et al. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications[J]. IEEE transactions on power electronics, 2011, 26(3): 923-930. DOI: 10.1109/TPEL. 2010.2095040.
[43] 张国驹, 唐西胜, 齐智平. 超级电容器与蓄电池混合储能系统在微网中的应用[J]. 电力系统自动化, 2010, 34(12): 85-89.
[44] DOUGAL R A, LIU S, WHITE R E. Power and life extension of battery-ultracapacitor hybrids[J]. IEEE transactions on components and packaging technologies, 2002, 25(1): 120-131. DOI: 10.1109/6144.991184.
[45] 侯健敏. 多因素影响的中国分布式能源并网策略研究[D]. 南京: 南京航空航天大学, 2014.
[46] 黎永华. 结合储能的并网光伏发电对电网的调峰作用分析[D]. 北京: 华北电力大学(北京), 2012.
[47] MISHRA A, IRWIN D, SHENOY P, et al. Scaling distributed energy storage for grid peak reduction[C]// Proceedings of the Fourth International Conference on Future Energy Systems. Berkeley, California, USA: ACM, 2013: 3-14. DOI: 10.1145/2487166.2487168.
[48] MOHD A, ORTJOHANN E, SCHMELTER A, et al. Challenges in integrating distributed Energy storage systems into future smart grid[C]//Proceedings of 2008 IEEE International Symposium on Industrial Electronics. Cambridge: IEEE, 2008: 1627-1632. DOI: 10.1109/ISIE. 2008.4676896.
[49] ANDERSSON T. Alternative energy storage system for hybrid electric vehicles[D]. Göteborg, Sweden: Chalmers University of Technology, 2004.
[50] GLAVIN M E, HURLEY W G. Optimisation of a photovoltaic battery ultracapacitor hybrid energy storage system[J]. Solar energy, 2012, 86(10): 3009-3020. DOI: 10.1016/j.solener.2012.07.005.
[51] 丁明, 林根德, 陈自年, 等. 一种适用于混合储能系统的控制策略[J]. 中国电机工程学报, 2012, 32(7): 1-6.
[52] 吴红斌, 蔡亮. 基于改进Tabu搜索算法的含分布式电源配电网最优潮流[J]. 电力系统保护与控制, 2012, 40(9): 82-86. DOI: 10.3969/j.issn.1674-3415.2012.09.014.
[53] DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi- objective optimization: NSGA-II[M]//Schoenauer M, Deb K, Rudolph G, et al. Parallel Problem Solving from Nature PPSN VI. Berlin, Heidelberg: Springer, 2000: 849-858. DOI: 10.1007/3-540-45356-3_83.
[54] 舒杰, 张先勇, 沈玉梁, 等. 可再生能源分布式微网电源规划方法及应用[J]. 控制理论与应用, 2010, 27(5): 675-680.
/
〈 |
|
〉 |