Welcome to visit Advances in New and Renewable Energy!

Effect of Organic Acid-Based Organosolv Fractionation of Eucalyptus on Pyrolysis Behavior of Its Derived Fractions

  • SUN Jiang-wei ,
  • ZHENG An-qing ,
  • JIANG Li-qun ,
  • ZHAO Zeng-li ,
  • LI Hai-bin ,
  • WU Chuang-zhi
Expand
  • 1. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China;    
    2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;                         
    4. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Received date: 2017-03-30

  Revised date: 2017-05-12

  Online published: 2017-06-30

Abstract

Oraganosolv fractionation of eucalyptus was conducted in three types of organic acid (formic acid, acetic acid and their mixture). The pyrolysis behavior of its derived fractions were systematically studied. The solid residues from organosolv fractionation, namely cellulose-rich fraction, were characterized by elemental analysis, Fourier transform infrared spectroscopy (FT-IR) analysis, and thermogravimetric analyzer couple with mass spectrometry (TG-MS). Cellulose-rich fractions and organosolv lignins were subsequent fast pyrolyzed in Py-GC/MS to test the yield of desired molecules. The results demonstrated that organosolv fractionation could effective deconstruct of eucalyptus into xylose, organosolv lignin and cellulose-rich fraction. The yield and selectivity of levoglucosan and phenols from eucalyptus were obviously enhanced by organosolv fractionation, and the mixed acid exhibited the best performance.

Cite this article

SUN Jiang-wei , ZHENG An-qing , JIANG Li-qun , ZHAO Zeng-li , LI Hai-bin , WU Chuang-zhi . Effect of Organic Acid-Based Organosolv Fractionation of Eucalyptus on Pyrolysis Behavior of Its Derived Fractions[J]. Advances in New and Renewable Energy, 2017 , 5(3) : 170 -176 . DOI: 10.3969/j.issn.2095-560X.2017.03.002

References

[1] 杜洪双, 常建民, 王鹏起, 等. 木质生物质快速热解生物油产率影响因素分析[J]. 林业机械与木工设备, 2007, 35(3): 16-20, 15. DOI: 10.3969/j.issn.2095-2953.2007.03.004.

[2] 雷学军, 罗梅健. 生物质能转化技术及资源综合开发利用研究[J]. 中国能源, 2010, 32(1): 22-28, 46. DOI: 10.3969/j.issn.1003-2355.2010.01.005.

[3] KUZHIYIL N, DALLUGE D, BAI X L, et al. Pyrolytic Sugars from Cellulosic Biomass[J]. ChemSusChem, 2012, 5(11): 2228-2236. DOI: 10.1002/cssc.201200341.

[4] DALLUGE D L, DAUGAARD T, JOHNSTON P, et al. Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass[J]. Green chemistry, 2014, 16(9): 4144-4155. DOI: 10.1039/C4GC00602J.

[5] 刘华敏, 马明国, 刘玉兰. 预处理技术在生物质热化学转化中的应用[J]. 化学进展, 2014, 26(1): 203-213.

[6] ZHANG Z Y, HARRISON M D, RACKEMANN D W, et al. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification[J]. Green chemistry, 2016, 18(2): 360-381. DOI: 10.1039/C5GC02034D.

[7] FERRER A, VEGA A, RODRÍGUEZ A, et al. Acetosolv pulping for the fractionation of empty fruit bunches from palm oil industry[J]. Bioresource technology, 2013, 132: 115-120. DOI: 10.1016/j.biortech.2012.12.189.

[8] ZHANG M J, QI W, LIU R, et al. Fractionating lignocellulose by formic acid: Characterization of major components[J]. Biomass and bioenergy, 2010, 34(4): 525-532. DOI: 10.1016/j.biombioe.2009.12.018.

[9] YU G, LI B, LIU C, et al. Fractionation of the main components of corn stover by formic acid and enzymatic saccharification of solid residue[J]. Industrial crops and products, 2013, 50: 750-757. DOI: 10.1016/j.indcrop.2013.08.053.

[10] ZHAO X B, LIU D H. Kinetic modeling and mechanisms of acid-catalyzed delignification of sugarcane bagasse by aqueous acetic acid[J]. BioEnergy research, 2013, 6(2): 436-447. DOI: 10.1007/s12155-012-9265-4.

[11] QU T T, GUO W J, SHEN L H, et al. Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin[J]. Industrial & engineering chemistry research, 2011, 50(18): 10424-10433. DOI: 10.1021/ie1025453.

[12] 关倩, 蒋剑春, 徐俊明, 等. 木质纤维生物质热化学转化预处理技术研究进展[J]. 生物质化学工程, 2014, 48(6): 56-61. DOI: 10.3969/j.issn.1673-5854.2014.06.010.

[13] LI S, LYONS-HART J, BANYASZ J, et al. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1809-1817. DOI: 10.1016/S0016-2361(01)00064-3.

[14] 武宏香, 李海滨, 冯宜鹏, 等. 钾元素对生物质主要组分热解特性的影响[J]. 燃料化学学报, 2013, 41(8): 950-957. DOI: 10.3969/j.issn.0253-2409.2013.08.008.

[15] 金湓, 李宝霞. 纤维素与木质素共热解试验及动力学分析[J]. 化工进展, 2013, 32(2): 303-307. DOI: 10.3969/j.issn.1000-6613.2013.02.010.

Outlines

/