Advances in New and Renewable Energy >
Effect of Pyrolysis Atmosphere on Catalysis, Gasification and Adsorption Characteristics of Coal Chars from Three Different Coal Ranks
Received date: 2017-01-05
Revised date: 2017-05-04
Online published: 2017-06-30
Coal chars can be used as catalyst, fuel of boiler and gasifiers, and adsorbents. In the coal staged conversion utilization polygeneration system, the raw coal is pyrolyzed in the atmosphere of pyrolysis gas. Compared with the inert gas atmosphere, the pyrolysis gas atmosphere will certainly influence the catalytic, gasification and adsorption characteristics of coal chars. In this paper, the Henan bituminous coal, Shanxi anthracite and Inner Mongolia lignite were selected to study the catalysis, gasification and adsorption characteristics of coal chars, and the coal chars were pyrolyzed in Ar, H2, CO, CO2 and CH4, respectively. The results indicate that coal chars prepared in CO2 atmosphere have the best catalytic reactivity in CH4-CO2 reforming reaction. In the gasification reaction of char-CO2 and char-H2O, the bituminous coal chars pyrolyzed in Ar, H2, CO or CO2 atmospheres have higher gasification reactivity than those pyrolyzed in CH4 atmosphere, while Shanxi anthracite and Inner Mongolia lignite chars pyrolyzed in Ar, CO, CO2 or CH4 atmospheres have better gasification reactivity than those pyrolyzed in H2 atmosphere. The chars prepared in Ar, H2, CO or CO2 atmosphere have stronger adsorption capacity for SO2 than the chars prepared in CH4 atmosphere.
Key words: coal chars; pyrolysis atmosphere; catalysis; gasification; adsorption
LEI Kai , SONG Zeng-hua , XU Hao , DONG Yi-jiang , CHEN Yi-fan , ZHANG Rui , LIU Dong . Effect of Pyrolysis Atmosphere on Catalysis, Gasification and Adsorption Characteristics of Coal Chars from Three Different Coal Ranks[J]. Advances in New and Renewable Energy, 2017 , 5(3) : 231 -237 . DOI: 10.3969/j.issn.2095-560X.2017.03.011
[1] 陈贵锋, 罗腾. 煤炭清洁利用发展模式与科技需求[J]. 洁净煤技术, 2014, 20(2): 99-103. DOI: 10.13226/j.issn. 1006-6772.2014.02.026.
[2] 岑可法, 倪明江, 骆仲泱, 等. 基于煤炭分级转化的发电技术前景[J]. 中国工程科学, 2015, 17(9): 118-122. DOI: 10.3969/j.issn.1009-1742.2015.09.019.
[3] 骆仲泱, 方梦祥, 王勤辉, 等. 循环流化床热电气焦油多联产装置及其方法: CN1978591[P]. 2007-06-13.
[4] ZHANG R. Thermodynamic and economic analysis of a coal staged conversion utilization polygeneration system[J]. Energy technology, 2015, 3(6): 646-657. DOI: 10.1002/ ente.201500009.
[5] ZHANG X F, DONG L, ZHANG J W, et al. Coal pyrolysis in a fluidized bed reactor simulating the process conditions of coal topping in CFB boiler[J]. Journal of analytical and applied pyrolysis, 2011, 91(1): 241-250. DOI: 10.1016/j.Jaap.2011.02.013.
[6] ZHANG Y M, WANG Y, GAI L G, et al. Dual bed pyrolysis gasification of coal: process analysis and pilot test[J]. Fuel, 2013, 112: 624-634. DOI: 10.1016/j.fuel. 2012.01.038.
[7] WANG J G, LU X S, YAO J Z, et al. Experimental study of coal topping process in a downer reactor[J]. Industrial & engineering chemistry research, 2005, 44(3): 463-470. DOI: 10.1021/ie049404g.
[8] 白宗庆, 李文, 尉迟唯, 等. 褐煤在合成气气氛下的低温热解及半焦燃烧特性[J]. 中国矿业大学学报, 2011, 40(5): 726-732.
[9] FERMOSO J, GIL M V, BORREGO A G, et al. Effect of the pressure and temperature of devolatilization on the morphology and steam gasification reactivity of coal chars[J]. Energy & fuels, 2010, 24(10): 5586-5595. DOI: 10.1021/ef100877t.
[10] CETIN E, MOGHTADERI B, GUPTA B, et al. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83(16): 2139-2150. DOI: 10.1016/j.fuel.2004.05.008.
[11] YU J L, LUCAS J A, TERRY F W. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: a review[J]. Progress in energy and combustion science, 2007, 33(2): 135-170. DOI: 10.1016/j.pecs.2006.07.003.
[12] WU S, GU J, LI L, et al. The reactivity and kinetics of Yanzhou coal chars from elevated pyrolysis temperatures during gasification in steam at 900-1200 oC[J]. Process safety and environmental protection, 2006, 84(6): 420-428. DOI: 10.1205/psep06031.
[13] FAN D M, ZHU Z P, NA Y J, et al. Thermogravimetric analysis of gasification reactivity of coal chars with steam and CO2 at moderate temperatures[J]. Journal of thermal analysis and calorimetry, 2013, 113(2): 599-607. DOI: 10.1007/s10973-012-2838-9.
[14] DUMAN G, UDDIN M A, YANIK J. The effect of char properties on gasification reactivity[J]. Fuel processing technology, 2014, 118: 75-81. DOI: 10.1016/j.fuproc. 2013.08.006.
[15] WU Z Q, WANG S Z, ZHAO J, et al. Thermal behavior and char structure evolution of bituminous coal blends with edible fungi residue during Co-pyrolysis[J]. Energy & fuels, 2014, 28(3): 1792-1801. DOI: 10.1021/ef500261q.
[16] REN H P, HAO Q Q, WANG W, et al. High-performance Ni-SiO2 for pressurized carbon dioxide reforming of methane[J]. International journal of hydrogen energy, 2014, 39(22): 11592-11605. DOI: 10.1016/j.ijhydene. 2014.05.155.
[17] 王永刚, 孙加亮, 张书. 反应气氛对褐煤气化反应性及半焦结构的影响[J]. 煤炭学报, 2014, 39(8): 1765-1771. DOI: 10.13225/j.cnki.jccs.2014.9037.
[18] SEKINE Y, ISHIKAWA K, KIKUCHI E, et al. Reactivity and structural change of coal char during steam gasification[J]. Fuel, 2006, 85(2): 122-126. DOI: 10.1016/j.fuel.2005.05.025.
[19] 范冬梅, 朱治平, 那永洁, 等. 一种褐煤煤焦水蒸气和CO2气化活性的对比研究[J]. 煤炭学报, 2013, 38(4): 681-687. DOI: 10.13225/j.cnki.jccs.2013.04.005.
[20] ATANES E, NIETO-MÁRQUEZ M, CAMBRA A, et al. Adsorption of SO2 onto waste cork powder-derived activated carbons[J]. Chemical engineering journal, 2012, 211-212: 60-67. DOI: 10.1016/j.cej.2012.09.043.
[21] LIU Q Y, LI C H, Li Y X. SO2 removal from flue gas by activated semi-cokes: 1. The preparation of catalysts and determination of operating conditions[J]. Carbon, 2003, 41(12): 2217-2223. DOI: 10.1016/S0008-6223(03)00205-7.
[22] 李文华, 刘昌见, 王志忠. 用褐煤半焦脱除烟气中SO2的研究[J]. 煤炭学报, 1998, 23(3): 321-326. DOI: 10.13225/j.cnki.jccs.1998.03.020.
[23] LIU Q Y, SHANGGUAN J, LI J G, et al. SO2 removal from flue gas by activated semi-cokes: 2. Effects of Physical structures and chemical properties on SO2 removal activity[J]. Carbon, 2003, 41(12): 2225-2230. DOI: 10.1016/S0008-6223(03)00230-6.
[24] 李先春, 熊祖宁, 董珍, 等. 生物质和褐煤共气化半焦吸附烟气SO2的研究[J]. 煤炭转化, 2016, 39(4): 31-36. DOI: 10.3969/j.issn.1004-4248.2016.04.007.
[25] XIONG R, DONG L, YU J, et al. Fundamentals of coal topping gasification: characterization of pyrolysis topping in a fluidized bed reactor[J]. Fuel processing technology, 2010, 91(8): 810-817. DOI: 10.1016/j.fuproc. 2009.07.005.
[26] ZHONG M, ZHANG Z K, ZHOU Q, et al. Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres: product distribution and pyrolysis gas[J]. Journal of analytical and applied pyrolysis, 2012, 97: 123-129. DOI: 10.1016/j.jaap.2012.04.009.
[27] ZENG X, WANG Y, YU J, et al. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy & fuels, 2011, 25(3): 1092-1098. DOI: 10.1021/ef-101441j.
[28] CHEN M S, YAO J J, GAO L, et al. Experimental study on removal of NO using adsorption of activated carbon/reduction decomposition of microwave heating[J]. Environmental technology, 2012, 33(15): 1811-1817. DOI: 10.1080/09593330.2011.646318.
[29] LÓPEZ D, BUITRAGO R, SEPÚLVEDA-ESCRIBANO A, et al. Low temperature catalytic adsorption of SO2 on activated carbon[J]. The journal of physical chemistry C, 2008, 112(39): 15335-15340. DOI: 10.1021/jp802809c.
[30] RODRÍGUEZ-REINOSO F, MOLINA-SABIO M, GONZÁLEZ M T. The use of steam and CO2 as activating agents in the preparation of activated carbons[J]. Carbon, 1995, 33(1): 15-23. DOI: 10.1016/ 0008-6223(94)00100-E.
[31] 钟梅, 马凤云. 不同气氛下煤连续热解产物的分配规律及产品品质分析[J]. 燃料化学学报, 2013, 41(12): 1427-1436.
[32] WANG B, SUN L S, SU S, et al. char structural evolution during pyrolysis and its influence on combustion reactivity in air and oxy-fuel conditions[J]. Energy & fuels, 2012, 26(3): 1565-1574. DOI: 10.1021/ef201723q.
[33] KARATEPE N, ORBAK ?, YAVUZ R, et al. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties[J]. Fuel, 2008, 87(15/16): 3207-3215. DOI: 10.1016/j.fuel.2008.06.002.
[34] 宋志敏. 变形煤物理模拟与吸附-解吸规律研究[D]. 郑州: 河南理工大学, 2012.
/
〈 |
|
〉 |