Welcome to visit Advances in New and Renewable Energy!

Terpene Resin/ Carboxymethyl Cellulose as Novel Water Soluble Binder for Graphite Anode in Lithium Ion Battery

  • ZHONG Hao-xiang ,
  • LU Ji-dian ,
  • HE Jia-rong ,
  • LI Yong ,
  • LIU He-chou ,
  • ZHANG Ling-zhi
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Guangzhou Lithium Force Energy Technology Co., Ltd, Guangzhou 510730, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. University of New South Wales, Sydney NSW2052, Australia

Received date: 2017-05-05

  Revised date: 2017-07-10

  Online published: 2017-08-30

Supported by

K.C.Wong Education Foundation; 
Natural Science Foundation of China (21573239); 
Science & Technology Project of Guangdong Province (2014TX01N014, 2014A050503050, 2015B010135008); 
Guangzhou Municipal Project for Science & Technology (201509010018); 
Natural Science Foundation of Guangdong Province (2015A030313721)

Abstract

Aquous terpene resin emulsion (ATRE) was prepared by the emulsification of natural terpene resins (TR) from many plants exudates and marine organisms. ATRE/carboxymethyl cellulose (CMC) were completely miscible by differential scanning calorimetry. ATRE/CMC composite was used as a binder for graphite electrode in Li-ion batteries in this paper. Optimized ratios of TR/CMC (3:2, by weight), the graphite electrode exhibits the higher specific capacity and better rate capability than that of the commercial styrene-butadiene rubber (SBR)/CMC binder.

Cite this article

ZHONG Hao-xiang , LU Ji-dian , HE Jia-rong , LI Yong , LIU He-chou , ZHANG Ling-zhi . Terpene Resin/ Carboxymethyl Cellulose as Novel Water Soluble Binder for Graphite Anode in Lithium Ion Battery[J]. Advances in New and Renewable Energy, 2017 , 5(4) : 243 -248 . DOI: 10.3969/j.issn.2095-560X.2017.04.001

References

[1] ZHAO H, WEI Y, QIAO R M, et al. Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application[J]. Nano letters, 2015, 15(2): 7927-7932. DOI: 10.1021/acs. nanolett.5b03003. [2] ZHONG H X, HE A Q, LU J D, et al. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries[J]. Journal of power sources, 2016, 336: 107-114. DOI: 10.1016/j.jpowsour.2016.10.041. [3] LEE S, OH E S. Performance enhancement of a lithium ion battery by incorporation of a graphene/polyvinylidene fluoride conductive adhesive layer between the current collector and the active material layer[J]. Journal of power sources, 2013, 244: 721-725. DOI: 10.1016/j. jpowsour.2012.11.079. [4] BIENSAN P, SIMON B, PéRèSA J P, et al. On safety of lithium-ion cells[J]. Journal of power sources, 1999, 81-82: 906-912. DOI: 10.1016/S0378-7753(99)00135-4. [5] KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high- capacity Li-ion batteries[J]. Science, 2011, 334(6052): 75-79. DOI: 10.1126/science.1209150. [6] SHAO D, ZHONG H X, ZHANG L Z. Water-soluble conductive composite binder containing PEDOT: PSS as conduction promoting agent for Si anode of lithium-ion batteries[J]. Chemelectrochem, 2014, 1(10): 1679-1687. DOI: 10.1002/celc.201402210. [7] DOBERDò I, L?FFLER N, LASZCZYNSKI N, et al. Enabling aqueous binders for lithium battery cathodes- carbon coating of aluminum current collector[J]. Journal of power sources, 2014, 248: 1000-1006. DOI: 10.1016/j.jpowsour.2013.10.039. [8] WANG Z L, DUPRé N, GAILLOT A C, et al. CMC as a binder in LiNi0.4Mn1.6O45 V cathodes and their electrochemical performance for Li-ion batteries[J]. Electrochimica acta, 2012, 62: 77-83. DOI: 10.1016/j. electacta.2011.11.094. [9] YABUUCHI N, KINOSHITA Y, MISAKI K, et al. Electrochemical properties of LiCoO2 electrodes with latex binders on high-voltage exposure[J]. Journal of the electrochemical society, 2015, 162(4): A538-A544. DOI: 10.1149/2.0151504jes. [10] YUE L, ZHANG L Z, ZHONG H X. Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries[J]. Journal of power sources, 2014, 247: 327-331. DOI: 10.1016/j.jpowsour.2013.08.073. [11] SU M H, ZHONG H X, JIAO S R, et al. Investigation on carboxymethyl chitosan as new water soluble binder for LiFePO4 cathode in li-ion batteries[J]. Electrochimica acta, 2014, 127: 239-244. DOI: 10.1016/j.electacta. 2014.02.027. [12] ZHONG H X, ZHOU P, YUE L, et al. Micro/nano- structured SnS2 negative electrodes using chitosan derivatives as water-soluble binders for Li-ion batteries[J]. Journal of applied electrochemistry, 2014, 44(1): 45-51. DOI: 10.1007/s10800-013-0590-x. [13] CHONG J, XUN S D, ZHENG H H, et al. A comparative study of polyacrylic acid and poly (vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells[J]. Journal of power sources, 2011, 196(18): 7707-7714. DOI: 10.1016/ j.jpowsour.2011.04.043. [14] HAN Z J, YABUUCHI N, SHIMOMURA K, et al. High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries[J]. Energy & environmental science, 2012, 5(10): 9014-9020. DOI: 10.1039/c2ee22292b. [15] CHOI J, KIM K, JEONG J, et al. Highly adhesive and soluble copolyimide binder: improving the long-term cycle life of silicon anodes in lithium-ion batteries[J]. ACS applied materials & interfaces, 2015, 7(27): 14851-14858. DOI: 10.1021/acsami.5b03364. [16] YUAN Q F, ZHAO F G, ZHAO Y M, et al. Reason analysis for graphite-Si/SiOx/C composite anode cycle fading and cycle improvement with PI binder[J]. Journal of solid state electrochemistry, 2014, 18(8): 2167-2174. DOI: 10.1007/s10008-014-2452-9. [17] ZHANG T, LI J T, LIU J, et al. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries[J]. Chemical communications, 2016, 52(25): 4683-4686. DOI: 10.1039/C5CC10534J. [18] LG Chemical Co Ltd. The constitution of the dispersant in the preparation of the electrode active material slurry and the use of the dispersant: 200480008658.1[P]. 2006-05-03. [19] ISHALIN E R. Effect of type of emulsifier on the kinetics of copolymerization of Bd with St in emulsion[J]. Khim tekhnol, 1991, 34(6): 66-69. [20] HANARI N, YAMAMOTO H, KURODA K I. Comparison of terpenes in extracts from the resin and the bark of the resinous stem canker of Chamaecyparis obtusa and Thujopsis dolabrata var. hondae[J]. Journal of wood science, 2002, 48(1): 56-63. DOI: 10.1007/ BF00766239. [21] WU Z H, CHEN S P, LI A M, et al. Preparation of terpene-resin emulsions[J]. Chemistry and industry of forest products, 2005, 25(1): 102-104. [22] NGUYEN M H T, OH E S. Application of a new acrylonitrile/butylacrylate water-based binder for negative electrodes of lithium-ion batteries[J]. Electrochemistry communications, 2013, 35: 45-48. DOI: 10.1016/j. elecom.2013.07.042. [23] COURTEL F M, NIKETIC S, DUGUAY D, et al. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries[J]. Journal of power sources, 2011, 196(4): 2128-2134. DOI: 10.1016/j.jpowsour.2010.10.025. [24] YUE L, WANG S Q, ZHAO X Y, et al. Nano-silicon composites using poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode[J]. Journal of materials chemistry, 2012, 22(3): 1094-1099. DOI: 10.1039/C1JM14568A. [25] MAHESH K C, MANJUNATHA H, VENKATESHA T V, et al. Study of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 in aqueous solution using electrochemical impedance spectroscopy[J]. Journal of solid state electrochemistry, 2012, 16(9): 3011-3025. DOI: 10.1007/s10008-012-1739-y.
Outlines

/