Welcome to visit Advances in New and Renewable Energy!

Effects of Anode Materials on the Electrochemical Performance of LiNi0.5Mn1.5O4 Battery

  • CHEN Peng ,
  • REN Ning ,
  • JI Xue-min ,
  • CHANG Lin-rong ,
  • DENG Ji-yang ,
  • SU Feng ,
  • LI Hong-tao
Expand
  • Zhejiang Chaowei Chuangyuan Shiye Co., Ltd., Huzhou 313100, China

Received date: 2017-04-02

  Revised date: 2017-05-22

  Online published: 2017-08-30

Abstract

The effects of different anode materials on the electrochemical performance of LiNi0.5Mn1.5O4 battery were studied, in which the cathode was LiNi0.5Mn1.5O4 (LNMO), the anode were artificial graphite (AG) and Li4Ti5O12 (LTO), and the electrolyte was LiPF6-EC/DMC/EMC (1:1:1, V/V/V). The results indicated that the discharge capacity retention rate of LNMO/LTO cell under −20oC were 71.59% and 75.51% at 10 C and 0.5 C respectively, and decreased to 89.19% after 100 cycles at 1 C. The LNMO/LTO cell displays better safety performance, which did not catch fire in the nail penetration test.

Cite this article

CHEN Peng , REN Ning , JI Xue-min , CHANG Lin-rong , DENG Ji-yang , SU Feng , LI Hong-tao . Effects of Anode Materials on the Electrochemical Performance of LiNi0.5Mn1.5O4 Battery[J]. Advances in New and Renewable Energy, 2017 , 5(4) : 259 -265 . DOI: 10.3969/j.issn.2095-560X.2017.04.004

References

[1] 陈鹏, 钱龙, 邓昌源, 等. 石墨负极材料形态对LiFePO4动力电池性能的影响[J]. 新能源进展, 2016, 34(3): 195-200. DOI: 10.3969/j.issn.2095-560X.2016.03. 005.
[2] BALOGUN M S, QIU W T, LUO Y, et al. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials[J]. Nano research, 2016, 9(10): 2823-2851. DOI 10.1007/s12274- 016-1171-1.
[3] LIM B B, MYUNG S T, YOON C S, et al. Comparative study of Ni-rich layered cathodes for rechargeable lithium batteries: Li [Ni0.85Co0.11Al0.04]O2 and Li [Ni0.84Co0.06Mn0.09Al0.01]O2 with two-step full concentration gradients[J]. ACS energy letters, 2016, 1(1): 283-289. DOI: 10.1021/acsenergylett.6b00150.
[4] MANTHIRAM A. Materials challenges and opportunities of lithium ion batteries[J]. The journal of physical chemistry letters, 2011, 2(3): 176-184. DOI: 10.1021/jz1015422.
[5] YANG L, RAVDEL B, LUCHT B L. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries[J]. Electrochemical and solid-state letters, 2010, 13(8): A95-A97. DOI: 10.1149/ 1.3428515.
[6] ZHANG Z C, HU L B, WU H M, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & environmental science, 2013, 6(6): 1806-1810. DOI: 10.1039/C3EE24414H.
[7] OHZUKU T, UEDA A, YAMAMOTO N, et al. Factor affecting the capacity retention of lithium-ion cells[J]. Journal of power sources, 1995, 54(1): 99-102. DOI: 10.1016/0378-7753(94)02047-7.
[8] ZHANG B, LIU Y S, HUANG Z D, et al. Urchin-like Li4Ti5O12-carbon nanofiber composites for high rate performance anodes in Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(24): 12133-12140. DOI: 10.1039/C2JM31308A.
[9] 刘君, 盘毅, 郑春满. 液相法制备锂离子电池用钛酸锂负极材料的研究进展[J]. 材料导报, 2012, 26(2): 144-148. DOI: 10.3969/j.issn.1005-023X.2012.03.028.
[10] XIANG H F, JIN Q Y, WANG R, et al. Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4 and Li4Ti5O12[J]. Journal of power sources, 2008, 179(1): 351-356. DOI: 10.1016/j.jpowsour. 2007.12.089.
[11] XIANG H F, ZHANG X, JIN Q Y, et al. Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells[J]. Journal of power sources, 2008, 183(1): 355-360. DOI: 10.1016/j.jpowsour.2008.04.091.
[12] LUO W B. Effect of morphology on the physical and electrochemical properties of the high-voltage spinel cathode LiMn1.5Ni0.5O4[J]. Journal of Alloys and Compounds, 2015, 636: 24-28. DOI: 10.1016/j.jallcom. 2015.02.163.
[13] WANG X Y, HAO H, LIU J L, et al. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries[J]. Electrochimica acta, 2011, 56(11): 4065-4069. DOI: 10.1016/j.electacta.2010.12.108.
[14] HU L B, ZHANG Z C, AMINE K. Fluorinated electrolytes for Li-ion battery: an FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple[J]. Electrochemistry communications, 2013, 35: 76-79. DOI: 10.1016/j.elecom.2013.08.009.
[15] HAN J T, GOODENOUGH J B. 3-V full cell performance of anode framework TiNb2O7/Spinel LiNi0.5Mn1.5O4[J]. Chemistry of materials, 2011, 23(15): 3404-3407. DOI: DOI: 10.1021/cm201515g.
[16] LI S R, CHEN C H, XIA X, et al. The impact of electrolyte oxidation products in LiNi0.5Mn1.5O4/Li4Ti5O12 cells[J]. Journal of the electrochemical society, 2013, 160(9): A1524-A1528. DOI: 10.1149/2.051309jes.
[17] WU H M, BELHAROUAK I, DENG H, et al. Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life[J]. Journal of the electrochemical society, 2009, 156(12): A1047-A1050. DOI: 10.1149/1.3240197.
[18] OHZUKU T, UEDA A. Why transition metal (di) oxides are the most attractive materials for batteries[J]. Solid state ionics, 1994, 69(3/4): 201-211. DOI: 10.1016/0167- 2738(94)90410-3.
[19] ZAGHIB K, SIMONEAU M, ARMAND M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of power sources, 1999, 81-82: 300-305. DOI: 10.1016/ S0378-7753(99)00209-8.
[20] YAO X L, XIE S Q, CHEN C H, et al. Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries[J]. Electrochimica acta, 2005, 50(20): 4076-4081. DOI: 10.1016/j.electacta. 2005.01.034.
Outlines

/