Welcome to visit Advances in New and Renewable Energy!

Life Cycle Assessment of Biodiesel Produced from Soybean and Waste Cooking Oil

  • YAN Jun-hua ,
  • WANG Shu-xiao ,
  • YUAN Hao-ran ,
  • CHEN Yong ,
  • SHAN Rui
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. University of Chinese Academy of Sciences, Beijing 10049, China;
    4. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Received date: 2017-05-04

  Revised date: 2017-08-04

  Online published: 2017-08-30

Abstract

The life cycle assessment (LCA) was used to quantify the emissions and energy consumption for the soybean oil and waste cooking oil biodiesel process. Compared with the soybean biodiesel, the energy consumption of waste cooking oil biodiesel was about 1/8 of soybean biodiesel, while the emissions of CO2, SO2, NOx, CO, CH4, VOC, smoke, PM10 and solid wastes for waste cooking oil biodiesel decreased by 14.2%, 56.7%, 4.9%, 46.3%, 96.5%, 98.5%, 8.8%, 61.9% and 10.1% respectively. Besides, compared with conventional diesel pathway, the CO2 emissions of soybean and waste cooking oil biodiesel were decreased by 83.5% and 85.9%, respectively. Obviously, it is more advantageous to produce biodiesel from waste cooking oil than from soybean oil.

Cite this article

YAN Jun-hua , WANG Shu-xiao , YUAN Hao-ran , CHEN Yong , SHAN Rui . Life Cycle Assessment of Biodiesel Produced from Soybean and Waste Cooking Oil[J]. Advances in New and Renewable Energy, 2017 , 5(4) : 279 -285 . DOI: 10.3969/j.issn.2095-560X.2017.04.007

References

[1] UNKEFER C J, SAYRE R T, MAGNUSON J K, et al. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts[J]. Algal research, 2017, 22: 187-215. DOI: 10.1016/j.algal.2016. 06.002.
[2] PETERSEN A M, MELAMU R, KNOETZE J H, et al. Comparison of second-generation processes for the conversion of sugarcane bagasse to liquid biofuels in terms of energy efficiency, pinch point analysis and Life Cycle Analysis[J]. Energy conversion and management, 2015, 91: 292-301. DOI: 10.1016/j.enconman.2014.12.002.
[3] DHARMA S, ONG H C, MASJUKI H H, et al. An overview of engine durability and compatibility using biodiesel-bioethanol-diesel blends in compression- ignition engines[J]. Energy conversion and management, 2016, 128: 66-81. DOI: 10.1016/j.enconman.2016.08.072.
[4] GAETA-BERNARDI A, PARENTE V. Organic municipal solid waste (MSW) as feedstock for biodiesel production: a financial feasibility analysis[J]. Renewable energy, 2016, 86: 1422-1432. DOI: 10.1016/j.renene.2015.08.025.
[5] RAJAEIFAR M A, ABDI R, TABATABAEI M. Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view[J]. Renewable and sustainable energy reviews, 2017, 74: 278-298. DOI: 10.1016/j.rser.2017.02.032.
[6] 胡志远, 谭丕强, 楼狄明, 等. 不同原料制备生物柴油生命周期能耗和排放评价[J]. 农业工程学报, 2006, 22(11): 141-146. DOI: 10.3321/j.issn:1002-6819.2006.11.029.
[7] 邢爱华, 马捷, 张英皓, 等. 生物柴油全生命周期经济性评价[J]. 清华大学学报(自然科学版), 2010, 50(6): 27-36. DOI: 10.16511/j.cnki.qhdxxb.2010.06.013.
[8] ACHTEN W M J, ALMEIDA J, FOBELETS V, et al. Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India[J]. Applied energy, 2010, 87(12): 3652-3660. DOI: 10.1016/j.apenergy.2010.07.003.
[9] ADESANYA V O, CADENA E, SCOTT S A, et al. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system[J]. Bioresource technology, 2014, 163: 343-355. DOI: 10.1016/j.biortech.2014.04.051.
[10] AITKEN D, BULBOA C, GODOY-FAUNDEZ A, et al. Life cycle assessment of macroalgae cultivation and processing for biofuel production[J]. Journal of cleaner production, 2014, 75: 45-56. DOI: 10.1016/j.jclepro. 2014.03.080.
[11] ISO 14040-2006. Environmental management-life cycle assessment- principles and framework[S]. 2006.
[12] MU D Y, RUAN R, ADDY M, et al. Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production[J]. Bioresource technology, 2017, 230: 33-42. DOI: 10.1016/j.biortech. 2016.12.108.
[13] PORTUGAL-PEREIRA J, NAKATANI J, KURISU K, et al. Life cycle assessment of conventional and optimised Jatropha biodiesel fuels[J]. Renewable energy, 2016, 86: 585-593. DOI: 10.1016/j.renene.2015.08.046.
[14] ISO 14044-2006. Environmental management-life cycle assessment- requirements and guidelines[S]. 2006.
[15] DONG T, GAO D F, MIAO C, et al. Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char[J]. Energy conversion and management, 2015, 105: 1389-1396. DOI: 10.1016/j. enconman.2015.06.072.
[16] 王修兰. 全球农作物对大气CO2及其倍增的吸收量估算[J]. 气象学报, 1996, 54(4): 466-473. DOI: 10.11676/ qxxb1996.048.
[17] GNANSOUNOU E, DAURIAT A, VILLEGAS J, et al. Life cycle assessment of biofuels: energy and greenhouse gas balances[J]. Bioresource technology, 2009, 100(21): 4919-4930. DOI: 10.1016/j.biortech.2009.05.067.
[18] 董进宁. 生物柴油制取的LCA及其技术经济性分析[D]. 广州: 华南理工大学, 2010.
[19] 许英武, 谢晓敏, 黄震, 等. 废煎炸油制生物柴油全生命周期分析[J]. 农业机械学报, 2010, 41(2): 99-103. DOI: 10.3969/j.issn.1000-1298.2010.02.020.
[20] PANDEY K K, PRAGYA N, SAHOO P K. Life cycle assessment of small-scale high-input Jatropha biodiesel production in India[J]. Applied energy, 2011, 88(12): 4831-4839. DOI: 10.1016/j.apenergy.2011.06.026.
[21] HUMS M E, CAIRNCROSS R A, SPATARI S. Life-cycle assessment of biodiesel produced from grease trap waste[J]. Environmental science & technology, 2016, 50(5): 2718-2726. DOI: 10.1021/acs.est.5b02667.
[22] GNANSOUNOU E, RAMAN J K. Life cycle assessment of algae biodiesel and its co-products[J]. Applied energy, 2016, 161: 300-308. DOI: 10.1016/j.apenergy.2015.10.043.
Outlines

/