Welcome to visit Advances in New and Renewable Energy!

Co-Pyrolysis Characteristics of Lignin and Lignite: Analytical Py-GC-MS Study

  • HUANG Yu-qian ,
  • WU Yu-ting ,
  • ZHENG An-qing ,
  • ZHAO Zeng-li ,
  • LI Hai-bin
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 
    2. University of Chinese Academy of Sciences, Beijing 100049, China; 
    3. School of Electric Power, South China University of Technology, Guangzhou 510640, China; 
    4. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; 
    5. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Received date: 2017-07-26

  Revised date: 2017-09-08

  Online published: 2017-10-30

Abstract

Lignin has a similar structure to lignite, liquid fuel and high value-added chemicals can be extracted from their co-pyrolysis liquid, and the pyrolysis coke can be used for further implementation of gasification. In this study, pine lignin, eucalyptus lignin and alkali lignin were selected, and the co-pyrolysis experiment with lignite was carried out respectively by Py-GC-MS at different mixing ratios. The synergistic effect of co-pyrolysis was investigated by analyzing the distribution of pyrolysis products. The experimental results showed that the pyrolysis products changed greatly with the mixing ratio and the types of materials added. In the co-pyrolysis of lignite and lignin, the higher hydrogen to carbon ratio of lignin can promote the yield of some specific products such as p-cresol, while the alkali and alkaline earth metals in alkali lignin also play an important catalytic role. Therefore, the yield of 2-methoxy-phenol, and creosol was enhanced.

Cite this article

HUANG Yu-qian , WU Yu-ting , ZHENG An-qing , ZHAO Zeng-li , LI Hai-bin . Co-Pyrolysis Characteristics of Lignin and Lignite: Analytical Py-GC-MS Study[J]. Advances in New and Renewable Energy, 2017 , 5(5) : 333 -340 . DOI: 10.3969/j.issn.2095-560X.2017.05.002

References

[1] 赵振新, 朱书全, 马名杰, 等. 中国褐煤的综合优化利用[J]. 洁净煤技术, 2008, 14(1): 28-31. DOI: 10.3969/j. issn.1006-6772.2008.01.008.
[2] 屈进州, 陶秀祥, 刘金艳, 等. 褐煤提质技术研究进展[J]. 煤炭科学技术, 2011, 39(11): 121-125. DOI: 10.13199/j.cst.2011.11.126.qujzh.006.
[3] HU J, SHEN D K, XIAO R, et al. Free-radical analysis on thermochemical transformation of lignin to phenolic compounds[J]. Energy & fuels, 2013, 27(1): 285-293. DOI: 10.1021/ef3016602?journalCode=enfuem.
[4] ZHAO J, WANG X W, HU J, et al. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS[J]. Polymer degradation and stability, 2014, 108: 133-138. DOI: 10.1016/j.polymdegradstab.2014.06.006.
[5] BOCCHINI P, GALLETTI G C, CAMARERO S, et al. Absolute quantitation of lignin pyrolysis products using an internal standard[J]. Journal of chromatography A, 1997, 773(1/2): 227-232. DOI: 10.1016/S0021-9673(97) 00114-3.
[6] FENG X B, CAO J P, ZHAO X Y, et al. Organic oxygen transformation during pyrolysis of Baiyinhua lignite[J]. Journal of analytical and applied pyrolysis, 2016, 117: 106-115. DOI: 10.1016/j.jaap.2015.12.010.
[7] WANG B S, CAO J P, ZHAO X Y, et al. Preparation of nickel-loaded on lignite char for catalytic gasification of biomass[J]. Fuel processing technology, 2014, 136: 17-24. DOI: 10.1016/j.fuproc.2014.07.024.
[8] CHEN C X, MA X Q, HE Y. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA[J]. Bioresource technology, 2012, 117: 264-273. DOI: 10.1016/j.biortech.2012.04.077.
[9] LIAO Y F, MA X Q. Thermogravimetric analysis of the co-combustion of coal and paper mill sludge[J]. Applied energy, 2010, 87(11): 3526-3532. DOI: 10.1016/j.apenergy. 2010.05.008.
[10] VUTHALURU H B. Thermal behaviour of coal/biomass blends during co-pyrolysis[J]. Fuel processing technology, 2004, 85(2/3): 141-155. DOI: 10.1016/S0378-3820(03) 00112-7.
[11] GUAN Y J, MA Y, ZHANG K, et al. Co-pyrolysis behaviors of energy grass and lignite[J]. Energy conversion and management, 2015, 93: 132-140. DOI: 10.1016/j.enconman.2015.01.006.
[12] VAMVUKA D, KAKARAS E, KASTANAKI E, et al. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite[J]. Fuel, 2003, 82(15/17): 1949-1960. DOI: 10.1016/S0016-2361(03)00153-4.
[13] IDRIS S S, RAHMAN N A, ISMAIL K, et al. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA)[J]. Bioresource technology, 2010, 101(12): 4584-4592. DOI: 10.1016/j.biortech.2010.01.059.
[14] KASTANAKI E, VAMVUKA D, GRAMMELIS P, et al. Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization[J]. Fuel processing technology, 2002, 77-78: 159-166. DOI: 10.1016/S0378- 3820(02)00049-8.
[15] DING L, ZHANG Y Q, WANG Z Q, et al. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresource technology, 2014, 173: 11-20. DOI: 10.1016/j.biortech.2014.09.007.
[16] SONCINI R M, MEANS N C, WEILAND N T. Co-pyrolysis of low rank coals and biomass: product distributions[J]. Fuel, 2013, 112: 74-82. DOI: 10.1016/j. fuel.2013.04.073.
[17] HAYKIRI-ACMA H, YAMAN S. Interaction between biomass and different rank coals during co-pyrolysis[J]. Renewable energy, 2010, 35(1): 288-292. DOI: 10.1016/ j.renene.2009.08.001.
[18] SONOBE T, WORASUWANNARAK N, PIPATMANOMAI S. Synergies in co-pyrolysis of Thai lignite and corncob[J]. Fuel processing technology, 2008, 89(12): 1371-1378. DOI: 10.1016/j.fuproc.2008.06.006.
[19] SONG Y Y, TAHMASEBI A, YU J L. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor[J]. Bioresource technology, 2014, 174: 204-211. DOI: 10.1016/j.biortech.2014.10.027.
[20] KRERKKAIWAN S, FUSHIMI C, TSUTSUMI A, et al. Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal[J]. Fuel processing technology, 2013, 115: 11-18. DOI: 10.1016/j.fuproc. 2013.03.044.
[21] ZHENG A Q, CHEN T J, SUN J W, et al. Toward fast pyrolysis-based biorefinery: selective production of platform chemicals from biomass by organosolv fractionation coupled with fast pyrolysis[J]. ACS sustainable chemistry & engineering, 2017, 5(8): 6507-6516. DOI: 10.1021/acssuschemeng.7b00622.
[22] 吴逸民, 赵增立, 李海滨, 等. 生物质主要组分低温热解研究[J]. 燃料化学学报, 2009, 37(4): 427-432. DOI: 10.3969/j.issn.0253-2409.2009.04.008.
[23] WEI L G, XU S P, ZHANG L, et al. Characteristics of fast pyrolysis of biomass in a free fall reactor[J]. Fuel processing technology, 2006, 87(10): 863-871. DOI: 10.1016/j.fuproc.2006.06.002.
[24] BEN H, RAGAUSKAS A J. NMR characterization of pyrolysis oils from kraft lignin[J]. Energy & fuels, 2011, 25(5): 2322-2332. DOI: 10.1021/ef2001162.
[25] CHOI H S, MEIER D. Fast pyrolysis of Kraft lignin-vapor cracking over various fixed-bed catalysts[J]. Journal of analytical and applied pyrolysis, 2013, 100: 207-212. DOI: 10.1016/j.jaap.2012.12.025.
[26] 茹斌. 基于复杂组分的生物质热裂解行为及影响机制研究[D]. 杭州: 浙江大学, 2016.
[27] 郭秀娟. 生物质选择性热裂解机理研究[D]. 杭州: 浙江大学, 2011.
[28] GUO D L, YUAN H Y, YIN X L, et al. Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis[J]. Bioresource technology, 2014, 152: 147-153. DOI: 10.1016/j.biortech.2013.10.057.
[29] 时莉. 生物质热解过程中内在矿物质的作用[D]. 上海: 华东理工大学, 2012.
[30] DALLUGE D L. Optimization of biomass fast pyrolysis for the production of monomers[D]. Ames, Iowa: Iowa University, 2013.
[31] KURODA K I, INOUE Y, SAKAI K. Analysis of lignin by pyrolysis-gas chromatography. I. Effect of inorganic substances on guaiacol-derivative yield from softwoods and their lignins[J]. Journal of analytical and applied pyrolysis, 1990, 18(1): 59-69. DOI: 10.1016/0165-2370 (90)85005-8.
[32] 杨昌炎, 姚建中, 吕雪松, 等. 生物质中K+、Ca2+对热解的影响及机理研究[J]. 太阳能学报, 2006, 27(5): 496-502. DOI: 10.3321/j.issn:0254-0096.2006.05.016.
[33] 李均. 烟煤与玉米秸秆共热解试验研究[D]. 杭州: 浙江大学, 2015.

Outlines

/