[1] 衣宝廉. 燃料电池——原理•技术•应用[M]. 北京: 化学工业出版社, 2003: 1-4.
[2] CHO A. Renewable energy. Hydrogen from ethanol goes portable[J]. Science, 2004, 303(5660): 942-943. DOI: 10.1126/science.303.5660.942b.
[3] BONACCORSO F, COLOMBO L, YU G H, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501. DOI: 10.1126/science.1246501.
[4] MATSUZAKI Y, TACHIKAWA Y, SOMEKAWA T, et al. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells[J]. Scientific reports, 2015, 5: 12640. DOI: 10.1038/srep12640.
[5] STAMENKOVIC V R, FOWLER B, MUN B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. DOI: 10.1126/science.1135941.
[6] YANG Z H, NAKASHIMA N. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum[J]. Scientific reports, 2015, 5: 12236. DOI: 10.1038/srep12236.
[7] 张敏, 李经建, 潘牧, 等. Pt纳米线阵列的氧还原催化性能[J]. 物理化学学报, 2011, 27(7): 1685-1688.
[8] 孙世刚, 陈胜利. 电催化[M]. 北京: 化学工业出版社, 2013: 1-5.
[9] HOLTON O T, STEVENSON J W. The role of platinum in proton exchange membrane fuel cells[J]. Platinum metals review, 2013, 57(4): 259-271. DOI: 10.1595/ 147106713X671222.
[10] WANG Y J, ZHAO N N, FANG B Z, et al. Carbon- supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity[J]. Chemical reviews, 2015, 115(9): 3433-3467. DOI: 10.1021/cr500519c.
[11] RUBENSTEIN M, CORNEJO A, NAGPAL R. Programmable self-assembly in a thousand-robot swarm[J]. Science, 2014, 345(6198): 795-799. DOI: 10.1126/science. 1254295.
[12] 刘锋, 王诚, 张剑波, 等. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771.
[13] HOSHINO H, ITO T, DONKAI N, et al. Lyotropic mesophase formation in PVA/imogolite mixture[J]. Polymer bulletin, 1992, 29(3/4): 453-460. DOI: 10.1007/ BF00944844.
[14] FULLAM S, COTTEL D, RENSMO H, et al. Carbon nanotube templated self-assembly and thermal processing of gold nanowires[J]. Advanced materials, 2000, 12(19): 1430-1432. DOI: 10.1002/1521-4095(200010)12:19<1430:: AID-ADMA1430>3.0.CO;2-8.
[15] CHOI H C, SHIM M, BANGSARUNTIP S, et al. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes[J]. Journal of American chemical society, 2002, 124(31): 9058-9059. DOI: 10.1021/ja026824t.
[16] MINKO S, KIRIY A, GORODYSKA G, et al. Mineralization of single flexible polyelectrolyte molecules[J]. Journal of American chemical society, 2002, 124(34): 10192-10197. DOI: 10.1021/ja026784t.
[17] ULRICH R, CHESNE A, TEMPLIN M, et al. Nano- objects with controlled shape, size, and composition from block copolymer mesophases[J]. Advances materials, 1999, 11(2): 141-146. DOI: 10.1002/(SICI)1521- 4095(199902)11:2<141::AID-ADMA141>3.0.CO;2-R.
[18] AJAYAN P M, STAPHAN O, COLLIEX C, et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science, 1994, 265(5176): 1212-1214. DOI: 10.1126/science.265.5176. 1212.
[19] BRAUN E, EICHEN Y, SIVAN U, et al. DNA- templated assembly and electrode attachment of a conducting silver wire[J]. Nature, 1998, 391(6669): 775-778. DOI: 10.1038/35826.
[20] HUANG M H, CHOUDREY A, YANG P D. Ag nanowire formation within mesoporous silica[J]. Chemical communications, 2000(12): 1063-1064. DOI: 10.1039/B002549F.
[21] WANG Z D, GAN Y, YAN C F, et al. Mechanism study of reversible transition between self-assembly and disassembly of ABC triblock copolymer micelles[J]. Polymer, 2016, 90: 276-281. DOI: 10.1016/j.polymer. 2016.03.036.
[22] FAHMI A M, BRAUN H G, STAMM M. Fabrication of metallized nanowires from self-assembled diblock copolymer templates[J]. Advanced materials, 2003, 15(14): 1201-1204. DOI: 10.1002/adma.200304995.
[23] MASSEY J A, WINNIK M A, MANNERS I, et al. Fabrication of oriented nanoscopic ceramic lines from cylindrical micelles of an organometallic polyferrocene block copolymer[J]. Journal of American chemical society, 2001, 123(13): 3147-3148. DOI: 10.1021/ja003174p.
[24] FÖRSTER S, KONRAD M. From self-organizing polymers to Nano- and biomaterials[J]. Journal of materials chemistry, 2003, 13(11): 2671-2688. DOI: 10.1039/B307512P.
[25] WANG Z D, GUO C Q, GAN Y, et al. Patterning of Au nanoparticles via secondary phase-separation of large-sized compound micelles of amphiphilic block copolymer[J]. Materials letters, 2017, 194, 135-137. DOI: 10.1016/j. matlet.2017.02.036.
[26] MIKKELSEN K, CASSIDY B, HOFSTETTER N, et al. Block copolymer templated synthesis of core−shell PtAu bimetallic nanocatalysts for the methanol oxidation reaction[J]. Chemistry of materials, 2014, 26(24): 6928-6940. DOI: 10.1021/cm5026798.
[27] ZHU Z W, TAO F, ZHENG F, et al. Formation of nanometer-sized surface platinum oxide clusters on a stepped Pt(557) single crystal surface induced by oxygen: a high-pressure STM and ambient-pressure xps study[J]. Nano letters, 2012, 12(3): 1491-1497. DOI: 10.1021/nl204242s.
[28] QIU J D, WANG G C, LIANG R P, et al. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells[J]. The journal of physical chemistry C, 2011, 115(31): 15639-15645. DOI: 10.1021/jp200580u.