Welcome to visit Advances in New and Renewable Energy!

Advances in Catalysts for One-Step Direct Conversion of Syngas to Light Olefins

  • GUO Hai-jun ,
  • ZHANG Hai-rong ,
  • WANG Can ,
  • TANG Wei-chao ,
  • PENG Fen ,
  • XIONG Lian ,
  • CHEN Pei-li ,
  • CHEN Xin-de
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;                         
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, China

Received date: 2017-07-19

  Revised date: 2017-08-20

  Online published: 2017-10-30

Abstract

With decreasing oil resource, the syngas has become an important mid-hub for connecting the upstream resources including coal, biomass, natural gas and etc. with the downstream products such as olefins, liquid fuels, and fine chemicals and oxygenates. The direct conversion of syngas to light olefins is one of the most challenging subjects in the national energy strategy. It is considered as a new attractive route for producing light olefins from non-petroleum resources, owing to its process simplicity and low energy consumption compared to the indirect route. However, the obtained success in the direct conversion of syngas to light olefins still keep in laboratory level because of the difficult improvement of catalytic activity and selectivity to light olefins simultaneously. There are two main pathways for the direct conversion of syngas to light olefins, including Fischer-Tropsch to olefins (FTO) reaction and bifunctional catalysis using composite catalysts such as Oxide-Zeolite (OX-ZEO). In this paper, the advances in recent five years made in the catalysts for the direct conversion of syngas to light olefins via these two pathways were reviewed. The ideas about the research and development of high-efficient catalysts in the future were also provided.

Cite this article

GUO Hai-jun , ZHANG Hai-rong , WANG Can , TANG Wei-chao , PENG Fen , XIONG Lian , CHEN Pei-li , CHEN Xin-de . Advances in Catalysts for One-Step Direct Conversion of Syngas to Light Olefins[J]. Advances in New and Renewable Energy, 2017 , 5(5) : 358 -364 . DOI: 10.3969/j.issn.2095-560X.2017.05.006

References

[1] 徐恒泳, 葛庆杰, 李文钊. 合成气中枢[J]. 石油化工, 2011, 40(7): 689-699.
[2] 钱伯章. 煤制烯烃市场与技术应用前景[J]. 上海化工, 2015, 40(7): 33-40. DOI: 10.3969/j.issn.1004-017X.2015. 07.008.
[3] 于飞, 李正甲, 安芸蕾, 等. 合成气催化转化直接制备低碳烯烃研究进展[J]. 燃料化学学报, 2016, 44(7): 801-814. DOI: 10.3969/j.issn.0253-2409.2016.07.005.
[4] 刘中民, 齐越. 甲醇制取低碳烯烃(DMTO)技术的研究开发及工业性试验[J]. 中国科学院院刊, 2006, 21(5): 406-408. DOI: 10.3969/j.issn.1000-3045.2006.05. 015.
[5] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS catalysis, 2013, 3(9): 2130-2149. DOI: 10.1021/cs4003436.
[6] SNEL R. Olefins from syngas[J]. Catalysis reviews, 1987, 29(4): 361-445. DOI: 10.1080/01614948708078612.
[7] TORRES GALVIS H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. DOI: 10.1126/science.1215614.
[8] ZHU Y F, PAN X L, JIAO F, et al. Role of manganese oxide in syngas conversion to light olefins[J]. ACS catalysis, 2017, 7(4): 2800-2804. DOI: 10.1021/acscatal. 7b00221.
[9] TORRES GALVIS H M, KOEKEN A C J, BITTER J H, et al. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of catalysis, 2013, 303: 22-30. DOI: 10.1016/j.jcat.2013.03.010.
[10] LIU Y, CHEN J F, BAO J, et al. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS catalysis, 2015, 5(6): 3905-3909. DOI: 10.1021/acscatal.5b00492.
[11] CHENG Y, LIN J, XU K, et al. Fischer–tropsch synthesis to lower olefins over Potassium-promoted reduced graphene oxide supported iron catalysts[J]. ACS catalysis, 2016, 6(1): 389-399. DOI: 10.1021/acscatal.5b02024.
[12] YUAN Y, HUANG S Y, WANG H Y, et al. Monodisperse nano-Fe3O4 on α-Al2O3 catalysts for Fischer-tropsch synthesis to lower olefins: promoter and size effects[J]. ChemCatChem, 2017, 9(16): 3144-3152. DOI: 10.1002/ cctc. 201700792.
[13] OSCHATZ M, LAMME W S, XIE J X, et al. Ordered mesoporous materials as supports for stable iron catalysts in the Fischer-tropsch synthesis of lower olefins[J]. ChemCatChem, 2016, 8(17): 2846-2852. DOI: 10.1002/ cctc.201600492.
[14] OSCHATZ M, VAN DEELEN T W, WEBER J L, et al. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas[J]. Catalysis science & technology, 2016, 6(24): 8464-8473. DOI: 10.1039/C6CY01251E.
[15] TORRES GALVIS H M, BITTER J H, DAVIDIAN T, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American chemical society, 2012, 134(39): 16207-16215. DOI: 10.1021/ja304958u.
[16] JIANG F, ZHANG M, LIU B, et al. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer–tropsch synthesis: understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation[J]. Catalysis science & technology, 2017, 7(5): 1245-1265. DOI: 10.1039/C7CY00048K.
[17] 程金燮, 胡志彪, 王科, 等. 我国合成气一步法制低碳烯烃催化剂研究新进展[J]. 化工进展, 2016, 35(8): 2439-2445. DOI: 10.16085/j.issn.1000-6613.2016.08.21.
[18] TANG L P, SONG C L, YANG X L, et al. Promotion of Mn doped Co/CNTs catalysts for CO hydrogenation to light olefins[J]. Chinese journal of chemistry, 2013, 31(6): 826-830. DOI: 10.1002/cjoc.201300248.
[19] FEYZI M, KHODAEI M M, SHAHMORADI J. Effect of preparation and operation conditions on the catalytic performance of cobalt-based catalysts for light olefins production[J]. Fuel processing technology, 2012, 93(1): 90-98. DOI: 10.1016/j.fuproc.2011.09.021.
[20] FEYZI M, HASSANKHANI A. TiO2 supported cobalt- manganese nano catalysts for light olefins production from syngas[J]. Journal of energy chemistry, 2013, 22(4): 645-652. DOI: 10.1016/S2095-4956(13)60085-6.
[21] ZHONG L S, YU F, AN Y L, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87. DOI: 10.1038/nature19786.
[22] DING Y J. Co2C nanoprisms for syngas conversion to lower olefins with high selectivity[J]. Chinese journal of catalysis, 2017, 38(1): 1-4. DOI: 10.1038/nature19786.
[23] 何鸣元. 合成气高选择性制低碳烯烃活性位结构新发现: Co2C的晶面效应[J]. 物理化学学报, 2016, 32(11): 2649-2650. DOI: 10.3866/PKU.WHXB201610102.
[24] CLAEYS M. Catalysis: cobalt gets in shape[J]. Nature, 2016, 538(7623): 44-45. DOI: 10.1038/538044a.
[25] LI Z J, ZHONG L S, YU F, et al. Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-tropsch to olefin reactions[J]. ACS catalysis, 2017, 7(5): 3622-3631. DOI: 10.1021/acscatal.6b03478.
[26] CHEN F Q, JIN W Y, CHENG D G, et al. Fabrication of AC@ZSM-5 core-shell particles and their performance in Fischer-Tropsch synthesis[J]. Journal of chemical technology and biotechnology, 2013, 88(12): 2133-2140. DOI: 10.1002/jctb.4072.
[27] JIAO F, LI J L, PAN X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. DOI: 10.1126/science.aaf1835.
[28] DE JONG K P. Surprised by selectivity[J]. Science, 2016, 351(6277): 1030-1031. DOI: 10.1126/science.aaf3250.
[29] WANG Y. A new horizontal in C1 chemistry: highly selective conversion of syngas to light olefins by a novel OX-ZEO process[J]. Journal of energy chemistry, 2016, 25(2): 169-170. DOI: 10.1016/j.jechem.2016.03.001.
[30] CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte chemie international edition, 2016, 55(15): 4725-4728. DOI: 10.1002/anie.201601208.
[31] JUNG K D, BELL A T. Role of hydrogen spillover in methanol synthesis over Cu/ZrO2[J]. Journal of catalysis, 2000, 193(2): 207-223. DOI: 10.1002/anie.201601208.
Outlines

/