Welcome to visit Advances in New and Renewable Energy!

Development on Solid Composite Desiccants for Desiccant Cooling Systems

  • LIU Lin ,
  • HE Zhao-hong ,
  • CHEN Jie-chao ,
  • DENG Li-sheng ,
  • KOBAYASHI Noriyuki ,
  • HUANG Hong-yu
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China;
    5. Nagoya University, Nagoya 4648603, Japan

Received date: 2017-04-20

  Revised date: 2017-07-20

  Online published: 2017-10-30

Abstract

Desiccants, as a key factor affecting the performance of solid desiccant cooling system, have always been the research focus due to it decides performance and economy of the entire cooling system. Composite desiccants are the most extensively used desiccant materials in solid desiccant cooling system in recent years because of large water uptake, high adsorption/desorption rate, good thermal and hygroscopic stability. This paper introduces the research progress of composite desiccants, mainly including silica gel-based composite desiccants, molecular sieve-based composite desiccants, carbon-based composite desiccants, natural rock-based composite desiccants and polymer composite desiccants. The dehumidification performances are especially compared, and the future development trend of composite desiccants is prospected.

Cite this article

LIU Lin , HE Zhao-hong , CHEN Jie-chao , DENG Li-sheng , KOBAYASHI Noriyuki , HUANG Hong-yu . Development on Solid Composite Desiccants for Desiccant Cooling Systems[J]. Advances in New and Renewable Energy, 2017 , 5(5) : 377 -385 . DOI: 10.3969/j.issn.2095-560X.2017.05.009

References

[1] COLLIER JR R K. Desiccant properties and their effect on cooling system performance[J]. ASHRAE transactions, 1989, 95(1): 823-827.
[2] GOLUBOVIC M N, HETTIARACHCHI H D M, WOREK W M. Sorption properties for different types of molecular sieve and their influence on optimum dehumidification performance of desiccant wheels[J]. International journal of heat and mass transfer, 2006, 49(17/18): 2802-2809. DOI: 10.1016/j.ijheatmasstransfer. 2006.03.012.
[3] ENTERIA N, YOSHINO H, SATAKE A, et al. Experimental heat and mass transfer of the separated and coupled rotating desiccant wheel and heat wheel[J]. Experimental thermal and fluid science, 2010, 34(5): 603-615. DOI: 10.1016/j.expthermflusci.2009.12.001.
[4] LA D, DAI Y J, LI Y, et al. Technical development of rotary desiccant dehumidification and air conditioning: a review[J]. Renewable and sustainable energy reviews, 2010, 14(1): 130-147. DOI: 10.1016/j.rser.2009.07.016.
[5] YUAN Y P, ZHANG H Q, YANG F, et al. Inorganic composite sorbents for water vapor sorption: a research progress[J]. Renewable and sustainable energy reviews, 2016, 54: 761-776. DOI: 10.1016/j.rser.2015.10.069.
[6] ZHENG X, GE T S, WANG R Z. Recent progress on desiccant materials for solid desiccant cooling systems[J]. Energy, 2014, 74: 280-294. DOI: 10.1016/ j.energy.2014.07.027.
[7] ARISTOV Y I. New family of solid sorbents for adsorptive cooling: material scientist approach[J]. Journal of engineering thermophysics, 2007, 16(2): 63-72. DOI: 10.1134/S1810232807020026.
[8] WANG L W, WANG R Z, OLIVEIRA R G. A review on adsorption working pairs for refrigeration[J]. Renewable and sustainable energy reviews, 2009, 13(3): 518-534. DOI: 10.1016/j.rser.2007.12.002.
[9] HUANG H Y, HE Z H, YUAN H R, et al. Effect of adsorbent diameter on the performance of adsorption refrigeration[J]. Chinese journal of chemical engineering, 2014, 22(5): 602-606. DOI: 10.1016/S1004-9541(14) 60074-4.
[10] ZHENG X, GE T S, WANG R Z, et al. Performance study of composite silica gels with different pore sizes and different impregnating hygroscopic salts[J]. Chemical engineering science, 2014, 120: 1-9. DOI: 10.1016/j. ces.2014.08.047.
[11] ZHENG X, GE T S, JIANG Y, et al. Experimental study on silica gel-LiCl composite desiccants for desiccant coated heat exchanger[J]. International journal of refrigeration, 2015, 51: 24-32. DOI: 10.1016/j.ijrefrig.2014.11.015.
[12] SIMONOVA I A, FRENI A, RESTUCCIA G, et al. Water sorption on composite “silica modified by calcium nitrate”[J]. Microporous and mesoporous materials, 2009, 122(1/3): 223-228. DOI: 10.1016/j.micromeso. 2009.02.034.
[13] GORDEEVA L G, RESTUCCIA G, CACCIOLA G, et al. Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: sorption properties[J]. Reaction kinetics and catalysis letters, 1998, 63(1): 81-88. DOI: 10.1007/BF02475434.
[14] ARISTOV Y I, RESTUCCIA G, CACCIOLA G, et al. A family of new working materials for solid sorption air conditioning systems[J]. Applied thermal engineering, 2002, 22(2): 191-204. DOI: 10.1016/S1359-4311(01) 00072-2.
[15] SUKHYY K M, BELYANOVSKAYA E A, KOZLOV Y N, et al. Structure and adsorption properties of the composites ‘silica gel-sodium sulphate’, obtained by sol-gel method[J]. Applied thermal engineering, 2014, 64(1/2): 408-412. DOI: 10.1016/j.applthermaleng.2013. 12.013.
[16] ARISTOV Y I, SAPIENZA A, OVOSHCHNIKOV D, et al. Reallocation of adsorption and desorption times for optimisation of cooling cycles[J]. International journal of refrigeration, 2012, 35(3): 525-531. DOI: 10.1016/j. ijrefrig.2010.07.019.
[17] FRENI A, SAPIENZA A, GLAZNEV I S, et al. Experimental testing of a lab-scale adsorption chiller using a novel selective water sorbent “silica modified by calcium nitrate”[J]. International journal of refrigeration, 2012, 35(3): 518-524. DOI: 10.1016/j.ijrefrig.2010.05.015.
[18] GORDEEVA L G, GREKOVA A D, KRIEGER T A, et al. Adsorption properties of composite materials (LiCl+ LiBr)/silica[J]. Microporous and mesoporous materials, 2009, 126(3): 262-267. DOI: 10.1016/j.micromeso.2009. 06.015.
[19] GORDEEVA L, GREKOVA A, KRIEGER T, et al. Composites “binary salts in porous matrix” for adsorption heat transformation[J]. Applied thermal engineering, 2013, 50(2): 1633-1638. DOI: 10.1016/j.applthermaleng. 2011.07.040.
[20] TSO C Y, CHAO C Y H. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems[J]. International journal of refrigeration, 2012, 35(6): 1626-1638. DOI: 10.1016/j.ijrefrig.2012.05.007.
[21] YU N, WANG R Z, LU Z S, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J]. Chemical engineering science, 2014, 111: 73-84. DOI: 10.1016/j.ces.2014.02.012.
[22] TASHIRO Y, KUBO M, KATSUMI Y, et al. Assessment of adsorption-desorption characteristics of adsorbents for adsorptive desiccant cooling system[J]. Journal of materials science, 2004, 39(4): 1315-1319. DOI: 10.1023/B:JMSC.0000013937.11959.6a.
[23] CHAN K C, CHAO C Y H, SZE-TO G N, et al. Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems[J]. International journal of heat and mass transfer, 2012, 55(11/12): 3214-3224. DOI: 10.1016/j.ijheatmasstransfer. 2012.02.054.
[24] CHAN K C, CHAO C Y H, BAHRAMI M. Heat and mass transfer characteristics of a zeolite 13X/CaCl2 Composite adsorbent in adsorption cooling systems[C]// Proceedings of the ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. San Diego, California, USA: American Society of Mechanical Engineers, 2012: 49-58. DOI: 10.1115/ES2012-91246.
[25] CORTÉS F B, CHEJNE F, CARRASCO-MARÍN F, et al. Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications[J]. Energy conversion and management, 2012, 53(1): 219-223. DOI: 10.1016/j.enconman.2011.09.001.
[26] 赖艳华, 吴涛, 赵琳妍, 等. 低温吸湿复合吸附剂的制备及吸湿性能[J]. 化工学报, 2015, 66(S1): 154-158. DOI: 10.11949/j.issn.0438-1157.20150297.
[27] 赵惠忠, 唐祥虎, 严昊鑫, 等. 基于13X沸石分子筛/MgCl2的复合吸附剂性能实验研究[J]. 制冷学报, 2016, 37(5): 50-56. DOI: 10.3969/j.issn.0253-4339.2016. 05.050.
[28] TOKAREV M, GORDEEVA L, ROMANNIKOV V, et al. New composite sorbent CaCl2 in mesopores for sorption cooling/heating[J]. International journal of thermal sciences, 2002, 41(5): 470-474. DOI: 10.1016/ S1290-0729(02)01339-X.
[29] JI J G, WANG R Z, LI L X. New composite adsorbent for solar-driven fresh water production from the atmosphere[J]. Desalination, 2007, 212(1/3): 176-182. DOI: 10.1016/j.desal.2006.10.008.
[30] ZHENG X, GE T S, HU L M, et al. Development and characterization of mesoporous silicate-LiCL composite desiccants for solid desiccant cooling systems[J]. Industrial & engineering chemistry research, 2015, 54(11): 2966-2973. DOI: 10.1021/ie504948j.
[31] PONOMARENKO I V, GLAZNEV I S, GUBAR A V, et al. Synthesis and water sorption properties of a new composite “CaCl2 confined into SBA-15 pores”[J]. Microporous and mesoporous materials, 2010, 129(1/2): 243-250. DOI: 10.1016/j.micromeso.2009.09.023.
[32] ZHENG X, WANG R Z, GE T S, et al. Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems[J]. Energy, 2015, 93: 88-94. DOI: 10.1016/j.energy.2015.09.024.
[33] AL-MOUSAWI F N, AL-DADAH R, MAHMOUD S. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials[J]. Energy conversion and management, 2016, 126: 373-384. DOI: 10.1016/j.enconman.2016.08.012.
[34] GIRNIK I S, ARISTOV Y I. Dynamic optimization of adsorptive chillers: the “AQSOA™-FAM-Z02-Water” working pair[J]. Energy, 2016, 106: 13-22. DOI: 10.1016/j.energy.2016.03.036.
[35] SHARAFIAN A, MEHR S M N, HUTTEMA W, et al. Effects of different adsorber bed designs on in-situ water uptake rate measurements of AQSOA FAM-Z02 for vehicle air conditioning applications[J]. Applied thermal engineering, 2016, 98: 568-574. DOI: 10.1016/j.applthermaleng.2015.12.060.
[36] NG E P, MINTOVA S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity[J]. Microporous and mesoporous materials, 2008, 114(1/3): 1-26. DOI: 10.1016/j.micromeso.2007. 12.022.
[37] GORDEEVA L G, RESTUCCIA G, FRENI A, et al. Water sorption on composites “LiBr in a porous carbon”[J]. Fuel processing technology, 2002, 79(3): 225-231. DOI: 10.1016/S0378-3820(02)00186-8.
[38] YE H, YUAN Z, LI S M, et al. Activated carbon fiber cloth and CaCl2 composite sorbents for a water vapor sorption cooling system[J]. Applied thermal engineering, 2014, 62(2): 690-696. DOI: 10.1016/j.applthermaleng. 2013.10.035.
[39] WANG J Y, WANG R Z, WANG L W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents[J]. Applied thermal engineering, 2016, 100: 893-901. DOI: 10.1016/j.applthermaleng. 2016.02.100.
[40] ZHANG H Q, YUAN Y P, YANG F, et al. Inorganic composite adsorbent CaCl2/MWNT for water vapor adsorption[J]. RSC advances, 2015, 5(48): 38630-38639. DOI: 10.1039/C5RA05860K.
[41] HUANG H Y, OIKE T, WATANABE F, et al. Development research on composite adsorbents applied in adsorption heat pump[J]. Applied thermal engineering, 2010, 30(10): 1193-1198. DOI: 10.1016/j.applthermaleng. 2010.01.036.
[42] THORUWA T F N, JOHNSTONE C M, GRANT A D, et al. Novel, low cost CaCl2 based desiccants for solar crop drying applications[J]. Renewable energy, 2000, 19(4): 513-520. DOI: 10.1016/S0960-1481(99)00072-5.
[43] 郑旭, 王如竹, 葛天舒. 硅藻-氯化锂复合除湿剂制备及吸附性能[J]. 化工学报, 2016, 67(7): 2874-2879. DOI: 10.11949/j.issn.0438-1157.20160048.
[44] CHEN H J, CUI Q, TANG Y, et al. Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications[J]. Applied thermal engineering, 2008, 28(17/18): 2187-2193. DOI: 10.1016/j.applthermaleng. 2007.12.015.
[45] NAKABAYASHI S, NAGANO K, NAKAMURA M, et al. Improvement of water vapor adsorption ability of natural mesoporous material by impregnating with chloride salts for development of a new desiccant filter[J]. Adsorption, 2011, 17(4): 675-686. DOI: 10.1007/s10450-011-9363-1.
[46] LEE J, LEE D Y. Sorption characteristics of a novel polymeric desiccant[J]. International journal of refrigeration, 2012, 35(7): 1940-1949. DOI: 10.1016/j. ijrefrig.2012.07.009.
[47] CHEN C H, HSU C Y, CHEN C C, et al. Silica gel polymer composite desiccants for air conditioning systems[J]. Energy and buildings, 2015, 101: 122-132. DOI: 10.1016/j.enbuild.2015.05.009.
[48] CHEN C H, HSU C Y, CHEN C C, et al. Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems[J]. Energy, 2016, 94: 87-99. DOI: 10.1016/j.energy.2015.10.139.
[49] CHEN C H, HUANG P C, YANG T H, et al. Polymer/alumina composite desiccant combined with periodic total heat exchangers for air-conditioning systems[J]. International journal of refrigeration, 2016, 67: 10-21. DOI: 10.1016/j.ijrefrig.2016.01.003.
[50] 刘川文, 黄红军, 李志广, 等. 改性聚乙烯醇-氯化钙共混物的吸湿性能研究[J]. 科学技术与工程, 2007, 7(6): 1169-1171. DOI: 10.3969/j.issn.1671-1815.2007. 06.056.
[51] 何贤培. 淀粉基复合凝胶干燥剂的制备与性能分析[J]. 化学工程师, 2016, 30(10): 63-64. DOI: 10.16247/j.cnki. 23-1171/tq.20161063.
[52] 张春晓, 张万喜, 刘健, 等. 有机高分子吸湿材料的研究进展[J]. 现代化工, 2008, 28(10): 14-17. DOI: 10.3321/ j.issn:0253-4320.2008.10.004.
[53] BATTEN S R, CHAMPNESS N R, CHEN X M, et al. Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013)[J]. Pure and applied chemistry, 2013, 85(8): 1715-1724. DOI: 10.1351/PAC-REC-12-11-20.
[54] ROWSELL J L C, YAGHI O M. Metal-organic frameworks: a new class of porous materials[J]. Microporous and mesoporous materials, 2004, 73(1/2): 3-14. DOI: 10.1016/j.micromeso.2004.03.034.
[55] MEEK S T, GREATHOUSE J A, ALLENDORF M D. Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials[J]. Advanced materials, 2011, 23(2): 249-267. DOI: 10.1002/adma.201002854.
[56] YAN J, YU Y, MA C, et al. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101 (Cr)@ GO with super-high capacity[J]. Applied thermal engineering, 2015, 84: 118-125. DOI: 10.1016/j. applthermaleng.2015.03.040.
[57] KÜSGENS P, ROSE M, SENKOVSKA I, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and mesoporous materials, 2009, 120(3): 325-330. DOI: 10.1016/j.micromeso.2008. 11.020.
[58] WICKENHEISSER M, JEREMIAS F, HENNINGER S K, et al. Grafting of hydrophilic ethylene glycols or ethylenediamine on coordinatively unsaturated metal sites in MIL-100(Cr) for improved water adsorption characteristics[J]. Inorganica chimica acta, 2013, 407: 145-152. DOI: 10.1016/j.ica.2013.07.024.
[59] EHRENMANN J, HENNINGER S K, JANIAK C. Water adsorption characteristics of MIL-101 for heat- transformation applications of MOFs[J]. European journal of inorganic chemistry, 2011, 2011(4): 471-474. DOI: 10.1002/ejic.201001156.
[60] ELSAYED E, RAYA A D, MAHMOUD S, et al. CPO-27(Ni), aluminium fumarate and MIL-101(Cr) MOF materials for adsorption water desalination[J]. Desalination, 2017, 406: 25-36. DOI: 10.1016/j.desal. 2016.07.030.
Outlines

/