Welcome to visit Advances in New and Renewable Energy!

Regression Analysis of Meteorological Factors in Winter for Output Power of Photovoltaic Power Generation System

  • HOU Song-bao ,
  • WANG Kan-hong ,
  • SHI Kai-bo ,
  • KONG Li ,
  • ZHANG Ao-lin
Expand
  • 1. Hebei University of Engineering, Handan 056038, China;
    2. Nankai University, Tianjin 30071, China

Received date: 2017-09-01

  Revised date: 2017-10-02

  Online published: 2017-10-30

Abstract

A prediction model for the output power of photovoltaic power generation system was built by using photovoltaic power output data and on-line monitoring of meteorological data from a photovoltaic power generation laboratory of a university in Hebei province. The direct correlation intensity between air quality and photovoltaic power was quantitatively analyzed by means of regression analysis. The direct influence and indirect interaction of daily average solar radiation intensity, average temperature, average wind speed, maximum air temperature and minimum air temperature were also considered. The results showed that the influence of solar radiation on the power generation of photovoltaic system was the most significant, while other factors have different effects. The influence of air quality on the photovoltaic system power generation should not be ignored. By using the regression model, the generation capacity of a small photovoltaic power station can be simply predicted based on the public meteorological data.

Cite this article

HOU Song-bao , WANG Kan-hong , SHI Kai-bo , KONG Li , ZHANG Ao-lin . Regression Analysis of Meteorological Factors in Winter for Output Power of Photovoltaic Power Generation System[J]. Advances in New and Renewable Energy, 2017 , 5(5) : 403 -408 . DOI: 10.3969/j.issn.2095-560X.2017.05.012

References

[1]      艾欣, 韩晓男, 孙英云. 光伏发电并网及其相关技术发展现状与展望[J]. 现代电力, 2013, 30(1): 1-7. DOI: 10.3969/j.issn.1007-2322.2013.01.001.

[2]      郭佳. 并网型光伏电站发电功率与其主气象影响因子相关性分析[D]. 北京: 华北电力大学, 2013.

[3]      赵雅芸. 光伏发电效率与气象影响因子关联分析研究[D]. 甘肃: 兰州交通大学, 2016.

[4]      金鑫, 袁越, 傅质馨, . 天气类型聚类的支持向量机在光伏系统输出功率预测中的应用[J]. 现代电力, 2013, 30(4): 13-18. DOI: 10.3969/j.issn.1007-2322.2013.04.003.

[5]      杜翠, 徐晓波, 刘宗歧, . 气象数据弱相关的光伏出力短期预测[J]. 现代电力, 2015, 32(6): 1-6. DOI: 10.3969/j.issn.1007-2322.2015.06.001.

[6]      刘大为, 彭文博, 鲍亮亮, . 考虑空气污染因素的光伏发电量回归分析[J]. 可再生能源, 2014, 32(12): 1785-1790. DOI: 10.13941/j.cnki.21-1469/tk.2014.12.004.

[7]      沈金荣, 惠杰, 倪莹, . 环境因素对光伏发电量综合回归分析[J]. 可再生能源 2016, 34(7): 997-1002. DOI: 10.13941/j.cnki.21-1469/tk.2016.07.008.

[8]      吕学梅, 朱虹, 王金东, . 气象因素对光伏发电量的影响分析[J]. 可再生能源, 2014, 32(10): 1423-1428. DOI: 10.13941/j.cnki.21-1469/tk.2014.10.001.

[9]      GUEYMARD C A. Direct solar transmittance and irradiance predictions with broadband models, Part I: detailed theoretical performance assessment[J]. Solar Energy, 2003, 74(5): 355-379. DOI: 10.1016/S0038- 092X(03)00195-6.

[10]   王旭峰. 并网型光伏电站发电功率的建模与预测研究[D]. 北京: 华北电力大学, 2013.

Outlines

/