Welcome to visit Advances in New and Renewable Energy!

Effect of Calcium Hydroxide on Heating Surface Corrosion of Waste Incinerator

  • OUYANG Xiao-ping ,
  • XU Hai-feng ,
  • ZHOU Jin-peng ,
  • LAI Jian-hua ,
  • WU Hai-hong ,
  • MA Xiao-qian ,
  • YU Zhao-sheng ,
  • CHEN Li-mei ,
  • LIN Yan
Expand
  • 1. Guangdong Institute of Special Equipment Inspection and Research, Huizhou Inspection Institute, Guangdong Huizhou 516002, China;         
    2. Everbright Environment Energy (Boluo) Co., Ltd., Guangdong Huizhou 516100, China;
    3. School of Electric Power, South China University of Technology, Guangzhou 510640, China

Received date: 2017-09-28

  Revised date: 2017-11-17

  Online published: 2017-12-29

Abstract

In order to slow down the corrosion of the heating surface in the incineration furnace, the Everbright Environment Energy’s (Boluo) power plant in Huizhou, Guangdong province, was selected for the study. During the study, calcium hydroxide was added to the furnace, the corrosion layer and deposition were analyzed by Scanning Electron Microscopy, and the analysis of the local and all-element components of the deposition was carried out by the Energy Dispersive Spectrometer and the X-ray Fluorescence Spectrometer. Results showed that, the acid gases which contain Cl and S were absorbed by calcium hydroxide effectively. S content in the tube layer decreased from 25.33% to 8.17%, and sulfur corrosion was greatly slowed down. Alkali metal content such as Na and K increased from 0.89% and 0.44% to 4.81% and 3.11%, and the alkali metal corrosion was accelerated to a certain extent. The amount of Fe in the deposition of the tube decreased from 8.42% to 4.54%, which proved that the high temperature corrosion was effectively alleviated by adding calcium hydroxide on considering both acid gas corrosion and alkali metal corrosion.

Cite this article

OUYANG Xiao-ping , XU Hai-feng , ZHOU Jin-peng , LAI Jian-hua , WU Hai-hong , MA Xiao-qian , YU Zhao-sheng , CHEN Li-mei , LIN Yan . Effect of Calcium Hydroxide on Heating Surface Corrosion of Waste Incinerator[J]. Advances in New and Renewable Energy, 2017 , 5(6) : 417 -425 . DOI: 10.3969/j.issn.2095-560X.2017.06.002

References

[1] 蒋旭光, 王忠民. 垃圾焚烧烟气高温腐蚀机理的研究[J]. 电站系统工程, 2002, 18(2): 53-55. DOI: 10.3969/j.issn.1005-006X.2002.02.022.
[2] 祝建中, 陈烈强, 甘轲. 垃圾焚烧气氛中碱金属氯化物的腐蚀机理[J]. 华南理工大学学报(自然科学版), 2005, 33(3): 78-82. DOI: 10.3321/j.issn:1000-565X.2005. 03.018.
[3] 左军, 陈恩鉴, 林伯川, 等. 垃圾焚烧炉过热器高温腐蚀与防护的研究概况[J]. 锅炉技术, 2002, 33(3): 26-32. DOI: 10.3969/j.issn.1672-4763.2002.03.007.
[4] 谢光辉. 垃圾焚烧烟气脱酸工艺[J]. 中国环保产业, 2016(6): 26-28, 31. DOI: 10.3969/j.issn.1006-5377.2016. 06.007.
[5] 陈晓波. 垃圾焚烧烟气脱酸影响因素简述[J]. 建筑工程技术与设计, 2016(36): 2281. DOI: 10.3969/j.issn. 2095-6630.2016.36.230.
[6] 王凡, 王红梅, 张凡, 等. 半干半湿法烟气脱硫技术的原理及应用研究[J]. 安全与环境学报, 2004, 4(1): 26-28, 55. DOI: 10.3969/j.issn.1009-6094.2004.01.006.
[7] 杨玉环, 张媛媛. 钙硫比对CFB锅炉炉内脱硫效率的影响研究[J]. 应用能源技术, 2013(6): 28-32. DOI: 10.3969/j.issn.1009-3230.2013.06.009.
[8] WANG H, GUO S, YANG L, et al. Impacts of water vapor and AAEMs on limestone desulfurization during coal combustion in a bench-scale fluidized-bed combustor[J]. Fuel processing technology, 2017, 155: 134-143. DOI: 10.1016/j.fuproc.2016.05.010.
[9] 张焕亨. 李坑垃圾焚烧高温腐蚀试验研究[D]. 广州: 华南理工大学, 2013.
[10] 潘葱英. 垃圾焚烧炉内过热器区HCl高温腐蚀研究[D]. 杭州: 浙江大学, 2004.
[11] YAN Z Q, WANG Z A, WANG X F, et al. Kinetic model for calcium sulfate decomposition at high temperature[J]. Transactions of nonferrous metals society of China, 2015, 25(10): 3490-3497. DOI: 10.1016/ S1003-6326(15)63986-3.
[12] JA'BAZ I, CHEN J, ETSCHMANN B, et al. Effect of silica additive on the high-temperature fireside tube corrosion during the air-firing and oxy-firing of lignite (Xinjiang coal)–characteristics of bulk and cross-sectional surfaces for the tubes[J]. Fuel, 2017, 187: 68-83. DOI: 10.1016/j.fuel.2016.09.040.
[13] BRYERS R W. Examination of fouling of convective heat transfer surface by calcium and sodium using micro-analytical techniques[C]//Joint Power Generation Conference. Portland, OR, USA: American Society of Mechanical Engineers, 1986.
[14] 吴超义. 锅炉水冷壁高温腐蚀特性试验研究[D]. 杭州: 浙江大学, 2003.
[15] 李莉, 宋景慧. 垃圾焚烧电厂过热器管腐蚀泄漏机制分析[J]. 华电技术, 2017, 39(4): 24-27. DOI: 10.3969/ j.issn.1674-1951.2017.04.007.
[16] 赖志燚. 城市生活垃圾在O2/N2及O2/CO2气氛下的燃烧特性及焚烧炉水冷壁腐蚀研究[D]. 广州: 华南理工大学, 2013.
[17] 许明磊. 垃圾焚烧过程受热面积灰烧结特性实验研究[D]. 杭州: 浙江大学, 2007.
[18] 敖翔. 超(超)临界锅炉螺旋式上升水冷壁的高温腐蚀研究[D]. 杭州: 浙江大学, 2017.
Outlines

/