[1] KOZUBAL E, HERRMANN L, DERU M, et al. Low-flow liquid desiccant air conditioning: General guidance and site considerations[R]. Golden, CO: National Renewable Energy Laboratory, 2014. DOI: 10.2172/1159352.
[2] WANG W L, WU L M, LI Z, et al. An overview of adsorbents in the rotary desiccant dehumidifier for air dehumidification[J]. Drying technology, 2013, 31(12): 1334-1345. DOI: 10.1080/07373937.2013.792094.
[3] AL-ALILI A, HWANG Y, RADERMACHER R. Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation[J]. Energy, 2015, 81: 137-145. DOI: 10.1016/j.energy.2014.11.084.
[4] JIA C X, DAI Y J, WU J Y, et al. Use of compound desiccant to develop high performance desiccant cooling system[J]. International journal of refrigeration, 2007, 30(2): 345-353. DOI: 10.1016/j.ijrefrig.2006.04.001.
[5] HU L M, GE T S, JIANG Y, et al. Performance study on composite desiccant material coated fin-tube heat exchangers[J]. International journal of heat and mass transfer, 2015, 90: 109-120. DOI: 10.1016/j.ijheatmasstransfer. 2015.06.033.
[6] KANG H, LEE D Y. Experimental investigation and introduction of a similarity parameter for characterizing the heat and mass transfer in polymer desiccant wheels[J]. Energy, 2017, 120: 705-717. DOI: 10.1016/j.energy. 2016.11.122.
[7] CHEN C H, HSU C Y, CHEN C C, et al. Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems[J]. Energy, 2016, 94: 87-99. DOI: 10.1016/j.energy.2015.10.139.
[8] CHUA K J. Heat and mass transfer of composite desiccants for energy efficient air dehumidification: Modelling and experiment[J]. Applied thermal engineering, 2015, 89: 703-716. DOI: 10.1016/j.applthermaleng.2015. 06.061.
[9] CHEN C H, HUANG P C, YANG T H, et al. Polymer/alumina composite desiccant combined with periodic total heat exchangers for air-conditioning systems[J]. International journal of refrigeration, 2016, 67: 10-21. DOI: 10.1016/j.ijrefrig.2016.01.003.
[10] LEE J, LEE D Y. Sorption characteristics of a novel polymeric desiccant[J]. International journal of refrigeration, 2012, 35(7): 1940-1949. DOI: 10.1016/j.ijrefrig.2012. 07.009.
[11] CAO T, LEE H, HWANG Y, et al. Experimental investigations on thin polymer desiccant wheel performance[J]. International journal of refrigeration, 2014, 44: 1-11. DOI: 10.1016/j.ijrefrig.2014.05.004.
[12] CHEN C H, HSU C Y, CHEN C C, et al. Silica gel polymer composite desiccants for air conditioning systems[J]. Energy and buildings, 2015, 101: 122-132. DOI: 10.1016/j.enbuild.2015.05.009.
[13] CHUNG H J, LEE J S, BAEK C, et al. Numerical analysis of the performance characteristics and optimal design of a plastic rotary regenerator considering leakage and adsorption[J]. Applied thermal engineering, 2016, 109: 227-237. DOI: 10.1016/j.applthermaleng.2016.08.074.
[14] GOLDSWORTHY M J, WHITE S. Design and performance of an internal heat exchange desiccant wheel[J]. International journal of refrigeration, 2014, 39: 152-159. DOI: 10.1016/j.ijrefrig.2013.10.009.
[15] ZHENG X, WANG R Z, GE T S. Experimental study and performance predication of carbon based composite desiccants for desiccant coated heat exchangers[J]. International journal of refrigeration, 2016, 72: 124-131. DOI: 10.1016/j.ijrefrig.2016.03.013.
[16] ZHENG X, WANG R Z, GE T S, et al. Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems[J]. Energy, 2015, 93: 88-94. DOI: 10.1016/j.energy.2015.09.024.
[17] GE T S, CAO W, PAN X, et al. Experimental investigation on performance of desiccant coated heat exchanger and sensible heat exchanger operating in series[J]. International journal of refrigeration, 2017, 83: 88-98. DOI: 10.1016/j.ijrefrig.2017.07.005.
[18] KUBOTA M, HANAOKA N, MATSUDA H, et al. Dehumidification behavior of cross-flow heat exchanger type Adsorber coated with Aluminophosphate zeolite for desiccant humidity control system[J]. Applied thermal engineering, 2017, 122: 618-625. DOI: 10.1016/j. applthermaleng.2017.05.047.
[19] YADAV L, YADAV A. Effect of different arrangements of sector on the performance of desiccant wheel[J]. Heat and mass transfer, 2017: 1-17. DOI: 10.1007/s00231- 017-2092-6.
[20] YADAV L, YADAV A. Effect of desiccant isotherm on the performance of a desiccant wheel at different operating conditions[J]. Heat transfer—Asian research, 2017, 46(6): 623-646. DOI: 10.1002/htj.21234.
[21] YADAV L, YADAV A. Mathematical investigation of purge sector angle for clockwise and anticlockwise rotation of desiccant wheel[J]. Applied thermal engineering, 2016, 93: 839-848. DOI: 10.1016/j.applthermaleng.2015. 10.062.
[22] MANDEGARI M A, FARZAD S, ANGRISANI G, et al. Study of purge angle effects on the desiccant wheel performance[J]. Energy conversion and management, 2017, 137: 12-20. DOI: 10.1016/j.enconman.2017.01.042.
[23] YAO Y. Using power ultrasound for the regeneration of dehumidizers in desiccant air-conditioning systems: A review of prospective studies and unexplored issues[J]. Renewable and sustainable energy reviews, 2010, 14(7): 1860-1873. DOI: 10.1016/j.rser.2010.03.042.
[24] YAO Y, LIU S Q. Desiccant system with ultrasonic- assisted regeneration[M]//YAO Y, LIU S Q. Ultrasonic Technology for Desiccant Regeneration. Shanghai: Shanghai Jiao Tong University Press, 2014: 283-292. DOI: 10.1002/9781118921616.ch6.
[25] YAO Y. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/ dehydration[J]. Ultrasonics sonochemistry, 2016, 31: 512-531. DOI: 10.1016/j.ultsonch.2016.01.039.
[26] KUBOTA M, HANADA T, YABE S, et al. Regeneration characteristics of desiccant rotor with microwave and hot-air heating[J]. Applied thermal engineering, 2013, 50(2): 1576-1581. DOI: 10.1016/j.applthermaleng.2011. 11.044.
[27] CHIANG Y C, CHEN C H, CHIANG Y C, et al. Circulating inclined fluidized beds with application for desiccant dehumidification systems[J]. Applied energy, 2016, 175: 199-211. DOI: 10.1016/j.apenergy.2016.05.009.
[28] CHEN C H, Schmid G, Chan C T, et al. Application of silica gel fluidised bed for air-conditioning systems[J]. Applied Thermal Engineering, 2015, 89: 229-238. DOI: org/10.1016/j.applthermaleng.2015.05.058.
[29] HAMED A M, EL RAHMAN W R A, EL-EMAM S H. Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed[J]. Energy, 2010, 35(6): 2468-2483. DOI: 10.1016/j.energy. 2010.02.042.
[30] CHEN C H, MA S S, WU P H, et al. Adsorption and desorption of silica gel circulating fluidized beds for air conditioning systems[J]. Applied energy, 2015, 155: 708-718. DOI: 10.1016/j.apenergy.2015.06.041.
[31] MUTHU S, TALUKDAR P, JAIN S. Effect of regeneration section angle on the performance of a rotary desiccant wheel[J]. Journal of thermal science and engineering applications, 2016, 8(1): 011013. DOI: 10.1115/1.4030966.
[32] ANGRISANI G, ROSELLI C, SASSO M. Effect of rotational speed on the performances of a desiccant wheel[J]. Applied energy, 2013, 104: 268-275. DOI: 10.1016/j.apenergy.2012.10.051.
[33] SUN J, BESANT R W. Heat and mass transfer during silica gel–moisture interactions[J]. International Journal of Heat and Mass Transfer, 2005, 48(23): 4953-4962. DOI: org/10.1016/j.ijheatmasstransfer.2005.02.043.
[34] KANG H, LEE G, LEE D Y. Explicit analytic solution for heat and mass transfer in a desiccant wheel using a simplified model[J]. Energy, 2015, 93: 2559-2567. DOI: 10.1016/j.energy.2015.10.091.
[35] ENTERIA N, YOSHINO H, TAKAKI R, et al. Exergetic performance of the desiccant heating, ventilating, and air-conditioning (DHVAC) system[M]//ENTERIA N, AWBI H, YOSHINO H. Desiccant Heating, Ventilating, and Air-Conditioning Systems. Singapore: Springer, 2017: 109-131. DOI: 10.1007/978-981-10-3047-5_5.
[36] JANI D B, MISHRA M, SAHOO P K. Solid desiccant air conditioning–a state of the art review[J]. Renewable and sustainable energy reviews, 2016, 60: 1451-1469. DOI: 10.1016/j.rser.2016.03.031.
[37] SHENG Y, ZHANG Y F, SUN Y X, et al. Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system[J]. Energy and buildings, 2014, 80: 358-365. DOI: 10.1016/j.enbuild.2014.05.040.
[38] LEE H, LIN X J, HWANG Y, et al. Performance investigation on solid desiccant assisted mobile air conditioning system[J]. Applied thermal engineering, 2016, 103: 1370-1380. DOI: 10.1016/j.applthermaleng. 2016.05.053.
[39] HUANG C K. Adsorption cooling with multi-stage desiccant processes[C]//ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego, California, USA: The American Society of Mechanical Engineers, 2013: V06BT07A034. DOI: 10.1115/IMECE2013-64480.
[40] LIU X H, ZHANG T, ZHENG Y W, et al. Performance investigation and exergy analysis of two-stage desiccant wheel systems[J]. Renewable energy, 2016, 86: 877-888. DOI: 10.1016/j.renene.2015.09.025.
[41] GADALLA M, SAGHAFIFAR M. Performance assessment and transient optimization of air precooling in multi-stage solid desiccant air conditioning systems[J]. Energy conversion and management, 2016, 119: 187-202. DOI: 10.1016/j.enconman.2016.04.018.
[42] JEONG J, YAMAGUCHI S, SAITO K, et al. Performance analysis of desiccant dehumidification systems driven by low-grade heat source[J]. International journal of refrigeration, 2011, 34(4): 928-945. DOI: 10.1016/j.ijrefrig.2010.10.001.
[43] JEONG J, YAMAGUCHI S, SAITO K, et al. Performance analysis of four-partition desiccant wheel and hybrid dehumidification air-conditioning system[J]. International journal of refrigeration, 2010, 33(3): 496-509. DOI: 10.1016/j.ijrefrig.2009.12.001.
[44] GUO J Y, LIN S M, BILBAO J I, et al. A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification[J]. Renewable and sustainable energy reviews, 2017, 67: 1-14. DOI: 10.1016/j.rser.2016.08.056.
[45] ASSADI M K, MOHAMMADI A. Simulation of dynamical performance of solar desiccant cooling cycle[J]. Applied mechanics and materials, 2016, 819: 160-170. DOI: 10.4028/www.scientific.net/AMM.819.160.
[46] EICKER U, SCHNEIDER D, SCHUMACHER J, et al. Operational experiences with solar air collector driven desiccant cooling systems[J]. Applied energy, 2010, 87(12): 3735-3747. DOI: 10.1016/j.apenergy.2010.06.022.
[47] YUKI K, JIN S, YOSHIHITO K, et al. Basic research for desiccant-based cooling system in consideration of effective utilization of low-temperature heat source[J]. Memoirs of the faculty of engineering Miyazaki university, 2013, 42: 59-64.
[48] PANARAS G, MATHIOULAKIS E, BELESSIOTIS V. Investigation of the effect of ambient conditions on the performance of solid desiccant cooling cycles[J]. International journal of sustainable energy, 2018, 37(1): 67-80. DOI: 10.1080/14786451.2016.1177051.
[49] SPHAIER L A, NÓBREGA C E L. Desiccant cooling cycle tuning for variable environmental conditions[J]. Heat transfer engineering, 2014, 35(11/12): 1035-1042. DOI: 10.1080/01457632.2013.863071.
[50] FATOUH M, ABOU-ZIYAN H, MAHMOUD O, et al. Experimental analysis of hybrid and conventional air conditioning systems working in hot-humid climate[J]. Applied thermal engineering, 2017, 118: 570-584. DOI: 10.1016/j.applthermaleng.2017.03.019.
[51] ENTERIA N, YOSHINO H, MOCHIDA A, et al. Performance of solar-desiccant cooling system with silica-gel (SiO2) and titanium dioxide (TiO2) desiccant wheel applied in East Asian climates[J]. Solar energy, 2012, 86(5): 1261-1279. DOI: 10.1016/j.solener.2012. 01.018.
[52] ENTERIA N, MIZUTANI K, MONMA Y, et al. Experimental evaluation of the new solid desiccant heat pump system in Asia-Pacific climatic conditions[J]. Applied thermal engineering, 2011, 31(2/3): 243-257. DOI: 10.1016/j.applthermaleng.2010.09.004.
[53] ZOUAOUI A, ZILI-GHEDIRA L, NASRALLAH S B. Solid desiccant solar air conditioning unit in Tunisia: Numerical study[J]. International journal of refrigeration, 2017, 74: 662-681. DOI: 10.1016/j.ijrefrig.2016.11.013.
[54] CAMARGO J R, GODOY JR E, EBINUMA C D. An evaporative and desiccant cooling system for air conditioning in humid climates[J]. Journal of the Brazilian society of mechanical sciences and engineering, 2005, 27(3): 243-247. DOI: 10.1590/S1678-58782005000300005.
[55] WHITE S D, KOHLENBACH P, BONGS C. Indoor temperature variations resulting from solar desiccant cooling in a building without thermal backup[J]. International journal of refrigeration, 2009, 32(4): 695-704. DOI: 10.1016/j.ijrefrig.2009.01.019.