Welcome to visit Advances in New and Renewable Energy!

Research Progress of Optimizations for Rotary Desiccant Wheel

  • CHEN Jie-chao ,
  • HUANG Hong-yu ,
  • HE Zhao-hong ,
  • DENG Li-sheng ,
  • LIU Lin
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-09-07

  Revised date: 2017-10-25

  Online published: 2017-12-29

Abstract

The new efficiency dehumidification technology can meet the comfort requirements in the household environment and the relevant industrial dehumidification standards, which is in line with the energy conservation and environmental protection policy. The rotary desiccant wheel is of relatively mature technology, which has advantages of simple equipment, less consumption and environment-friendly. However, there are still several aspects to improve the technology, for example, the improvement in adsorption ability of desiccants, heat and mass transfer performance of the internal dehumidifying device, utilization efficiency of the low-grade energy sources, and so on. In this paper, the recent optimization techniques for rotary desiccant wheel systems are summarized. Five aspects of optimization such as development of new composite desiccant, invention of structure of desiccant bed, novel design of circulation system, enhancement of the utilization efficient of low-grade source energy and operation optimum with ambient air condition, are described. This review may provide some reference for the actual application of rotary wheel dehumidification system.

Cite this article

CHEN Jie-chao , HUANG Hong-yu , HE Zhao-hong , DENG Li-sheng , LIU Lin . Research Progress of Optimizations for Rotary Desiccant Wheel[J]. Advances in New and Renewable Energy, 2017 , 5(6) : 457 -465 . DOI: 10.3969/j.issn.2095-560X.2017.06.007

References

[1] KOZUBAL E, HERRMANN L, DERU M, et al. Low-flow liquid desiccant air conditioning: General guidance and site considerations[R]. Golden, CO: National Renewable Energy Laboratory, 2014. DOI: 10.2172/1159352.
[2] WANG W L, WU L M, LI Z, et al. An overview of adsorbents in the rotary desiccant dehumidifier for air dehumidification[J]. Drying technology, 2013, 31(12): 1334-1345. DOI: 10.1080/07373937.2013.792094.
[3] AL-ALILI A, HWANG Y, RADERMACHER R. Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation[J]. Energy, 2015, 81: 137-145. DOI: 10.1016/j.energy.2014.11.084.
[4] JIA C X, DAI Y J, WU J Y, et al. Use of compound desiccant to develop high performance desiccant cooling system[J]. International journal of refrigeration, 2007, 30(2): 345-353. DOI: 10.1016/j.ijrefrig.2006.04.001.
[5] HU L M, GE T S, JIANG Y, et al. Performance study on composite desiccant material coated fin-tube heat exchangers[J]. International journal of heat and mass transfer, 2015, 90: 109-120. DOI: 10.1016/j.ijheatmasstransfer. 2015.06.033.
[6] KANG H, LEE D Y. Experimental investigation and introduction of a similarity parameter for characterizing the heat and mass transfer in polymer desiccant wheels[J]. Energy, 2017, 120: 705-717. DOI: 10.1016/j.energy. 2016.11.122.
[7] CHEN C H, HSU C Y, CHEN C C, et al. Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems[J]. Energy, 2016, 94: 87-99. DOI: 10.1016/j.energy.2015.10.139.
[8] CHUA K J. Heat and mass transfer of composite desiccants for energy efficient air dehumidification: Modelling and experiment[J]. Applied thermal engineering, 2015, 89: 703-716. DOI: 10.1016/j.applthermaleng.2015. 06.061.
[9] CHEN C H, HUANG P C, YANG T H, et al. Polymer/alumina composite desiccant combined with periodic total heat exchangers for air-conditioning systems[J]. International journal of refrigeration, 2016, 67: 10-21. DOI: 10.1016/j.ijrefrig.2016.01.003.
[10] LEE J, LEE D Y. Sorption characteristics of a novel polymeric desiccant[J]. International journal of refrigeration, 2012, 35(7): 1940-1949. DOI: 10.1016/j.ijrefrig.2012. 07.009.
[11] CAO T, LEE H, HWANG Y, et al. Experimental investigations on thin polymer desiccant wheel performance[J]. International journal of refrigeration, 2014, 44: 1-11. DOI: 10.1016/j.ijrefrig.2014.05.004.
[12] CHEN C H, HSU C Y, CHEN C C, et al. Silica gel polymer composite desiccants for air conditioning systems[J]. Energy and buildings, 2015, 101: 122-132. DOI: 10.1016/j.enbuild.2015.05.009.
[13] CHUNG H J, LEE J S, BAEK C, et al. Numerical analysis of the performance characteristics and optimal design of a plastic rotary regenerator considering leakage and adsorption[J]. Applied thermal engineering, 2016, 109: 227-237. DOI: 10.1016/j.applthermaleng.2016.08.074.
[14] GOLDSWORTHY M J, WHITE S. Design and performance of an internal heat exchange desiccant wheel[J]. International journal of refrigeration, 2014, 39: 152-159. DOI: 10.1016/j.ijrefrig.2013.10.009.
[15] ZHENG X, WANG R Z, GE T S. Experimental study and performance predication of carbon based composite desiccants for desiccant coated heat exchangers[J]. International journal of refrigeration, 2016, 72: 124-131. DOI: 10.1016/j.ijrefrig.2016.03.013.
[16] ZHENG X, WANG R Z, GE T S, et al. Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems[J]. Energy, 2015, 93: 88-94. DOI: 10.1016/j.energy.2015.09.024.
[17] GE T S, CAO W, PAN X, et al. Experimental investigation on performance of desiccant coated heat exchanger and sensible heat exchanger operating in series[J]. International journal of refrigeration, 2017, 83: 88-98. DOI: 10.1016/j.ijrefrig.2017.07.005.
[18] KUBOTA M, HANAOKA N, MATSUDA H, et al. Dehumidification behavior of cross-flow heat exchanger type Adsorber coated with Aluminophosphate zeolite for desiccant humidity control system[J]. Applied thermal engineering, 2017, 122: 618-625. DOI: 10.1016/j. applthermaleng.2017.05.047.
[19] YADAV L, YADAV A. Effect of different arrangements of sector on the performance of desiccant wheel[J]. Heat and mass transfer, 2017: 1-17. DOI: 10.1007/s00231- 017-2092-6. 
[20] YADAV L, YADAV A. Effect of desiccant isotherm on the performance of a desiccant wheel at different operating conditions[J]. Heat transfer—Asian research, 2017, 46(6): 623-646. DOI: 10.1002/htj.21234.
[21] YADAV L, YADAV A. Mathematical investigation of purge sector angle for clockwise and anticlockwise rotation of desiccant wheel[J]. Applied thermal engineering, 2016, 93: 839-848. DOI: 10.1016/j.applthermaleng.2015. 10.062.
[22] MANDEGARI M A, FARZAD S, ANGRISANI G, et al. Study of purge angle effects on the desiccant wheel performance[J]. Energy conversion and management, 2017, 137: 12-20. DOI: 10.1016/j.enconman.2017.01.042.
[23] YAO Y. Using power ultrasound for the regeneration of dehumidizers in desiccant air-conditioning systems: A review of prospective studies and unexplored issues[J]. Renewable and sustainable energy reviews, 2010, 14(7): 1860-1873. DOI: 10.1016/j.rser.2010.03.042.
[24] YAO Y, LIU S Q. Desiccant system with ultrasonic- assisted regeneration[M]//YAO Y, LIU S Q. Ultrasonic Technology for Desiccant Regeneration. Shanghai: Shanghai Jiao Tong University Press, 2014: 283-292. DOI: 10.1002/9781118921616.ch6.
[25] YAO Y. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/ dehydration[J]. Ultrasonics sonochemistry, 2016, 31: 512-531. DOI: 10.1016/j.ultsonch.2016.01.039.
[26] KUBOTA M, HANADA T, YABE S, et al. Regeneration characteristics of desiccant rotor with microwave and hot-air heating[J]. Applied thermal engineering, 2013, 50(2): 1576-1581. DOI: 10.1016/j.applthermaleng.2011. 11.044.
[27] CHIANG Y C, CHEN C H, CHIANG Y C, et al. Circulating inclined fluidized beds with application for desiccant dehumidification systems[J]. Applied energy, 2016, 175: 199-211. DOI: 10.1016/j.apenergy.2016.05.009.
[28] CHEN C H, Schmid G, Chan C T, et al. Application of silica gel fluidised bed for air-conditioning systems[J]. Applied Thermal Engineering, 2015, 89: 229-238. DOI: org/10.1016/j.applthermaleng.2015.05.058.
[29] HAMED A M, EL RAHMAN W R A, EL-EMAM S H. Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed[J]. Energy, 2010, 35(6): 2468-2483. DOI: 10.1016/j.energy. 2010.02.042.
[30] CHEN C H, MA S S, WU P H, et al. Adsorption and desorption of silica gel circulating fluidized beds for air conditioning systems[J]. Applied energy, 2015, 155: 708-718. DOI: 10.1016/j.apenergy.2015.06.041.
[31] MUTHU S, TALUKDAR P, JAIN S. Effect of regeneration section angle on the performance of a rotary desiccant wheel[J]. Journal of thermal science and engineering applications, 2016, 8(1): 011013. DOI: 10.1115/1.4030966.
[32] ANGRISANI G, ROSELLI C, SASSO M. Effect of rotational speed on the performances of a desiccant wheel[J]. Applied energy, 2013, 104: 268-275. DOI: 10.1016/j.apenergy.2012.10.051.
[33] SUN J, BESANT R W. Heat and mass transfer during silica gel–moisture interactions[J]. International Journal of Heat and Mass Transfer, 2005, 48(23): 4953-4962. DOI: org/10.1016/j.ijheatmasstransfer.2005.02.043.
[34] KANG H, LEE G, LEE D Y. Explicit analytic solution for heat and mass transfer in a desiccant wheel using a simplified model[J]. Energy, 2015, 93: 2559-2567. DOI: 10.1016/j.energy.2015.10.091.
[35] ENTERIA N, YOSHINO H, TAKAKI R, et al. Exergetic performance of the desiccant heating, ventilating, and air-conditioning (DHVAC) system[M]//ENTERIA N, AWBI H, YOSHINO H. Desiccant Heating, Ventilating, and Air-Conditioning Systems. Singapore: Springer, 2017: 109-131. DOI: 10.1007/978-981-10-3047-5_5.
[36] JANI D B, MISHRA M, SAHOO P K. Solid desiccant air conditioning–a state of the art review[J]. Renewable and sustainable energy reviews, 2016, 60: 1451-1469. DOI: 10.1016/j.rser.2016.03.031.
[37] SHENG Y, ZHANG Y F, SUN Y X, et al. Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system[J]. Energy and buildings, 2014, 80: 358-365. DOI: 10.1016/j.enbuild.2014.05.040.
[38] LEE H, LIN X J, HWANG Y, et al. Performance investigation on solid desiccant assisted mobile air conditioning system[J]. Applied thermal engineering, 2016, 103: 1370-1380. DOI: 10.1016/j.applthermaleng. 2016.05.053.
[39] HUANG C K. Adsorption cooling with multi-stage desiccant processes[C]//ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego, California, USA: The American Society of Mechanical Engineers, 2013: V06BT07A034. DOI: 10.1115/IMECE2013-64480.
[40] LIU X H, ZHANG T, ZHENG Y W, et al. Performance investigation and exergy analysis of two-stage desiccant wheel systems[J]. Renewable energy, 2016, 86: 877-888. DOI: 10.1016/j.renene.2015.09.025.
[41] GADALLA M, SAGHAFIFAR M. Performance assessment and transient optimization of air precooling in multi-stage solid desiccant air conditioning systems[J]. Energy conversion and management, 2016, 119: 187-202. DOI: 10.1016/j.enconman.2016.04.018.
[42] JEONG J, YAMAGUCHI S, SAITO K, et al. Performance analysis of desiccant dehumidification systems driven by low-grade heat source[J]. International journal of refrigeration, 2011, 34(4): 928-945. DOI: 10.1016/j.ijrefrig.2010.10.001.
[43] JEONG J, YAMAGUCHI S, SAITO K, et al. Performance analysis of four-partition desiccant wheel and hybrid dehumidification air-conditioning system[J]. International journal of refrigeration, 2010, 33(3): 496-509. DOI: 10.1016/j.ijrefrig.2009.12.001.
[44] GUO J Y, LIN S M, BILBAO J I, et al. A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification[J]. Renewable and sustainable energy reviews, 2017, 67: 1-14. DOI: 10.1016/j.rser.2016.08.056.
[45] ASSADI M K, MOHAMMADI A. Simulation of dynamical performance of solar desiccant cooling cycle[J]. Applied mechanics and materials, 2016, 819: 160-170. DOI: 10.4028/www.scientific.net/AMM.819.160.
[46] EICKER U, SCHNEIDER D, SCHUMACHER J, et al. Operational experiences with solar air collector driven desiccant cooling systems[J]. Applied energy, 2010, 87(12): 3735-3747. DOI: 10.1016/j.apenergy.2010.06.022.
[47] YUKI K, JIN S, YOSHIHITO K, et al. Basic research for desiccant-based cooling system in consideration of effective utilization of low-temperature heat source[J]. Memoirs of the faculty of engineering Miyazaki university, 2013, 42: 59-64.
[48] PANARAS G, MATHIOULAKIS E, BELESSIOTIS V. Investigation of the effect of ambient conditions on the performance of solid desiccant cooling cycles[J]. International journal of sustainable energy, 2018, 37(1): 67-80. DOI: 10.1080/14786451.2016.1177051.
[49] SPHAIER L A, NÓBREGA C E L. Desiccant cooling cycle tuning for variable environmental conditions[J]. Heat transfer engineering, 2014, 35(11/12): 1035-1042. DOI: 10.1080/01457632.2013.863071.
[50] FATOUH M, ABOU-ZIYAN H, MAHMOUD O, et al. Experimental analysis of hybrid and conventional air conditioning systems working in hot-humid climate[J]. Applied thermal engineering, 2017, 118: 570-584. DOI: 10.1016/j.applthermaleng.2017.03.019.
[51] ENTERIA N, YOSHINO H, MOCHIDA A, et al. Performance of solar-desiccant cooling system with silica-gel (SiO2) and titanium dioxide (TiO2) desiccant wheel applied in East Asian climates[J]. Solar energy, 2012, 86(5): 1261-1279. DOI: 10.1016/j.solener.2012. 01.018.
[52] ENTERIA N, MIZUTANI K, MONMA Y, et al. Experimental evaluation of the new solid desiccant heat pump system in Asia-Pacific climatic conditions[J]. Applied thermal engineering, 2011, 31(2/3): 243-257. DOI: 10.1016/j.applthermaleng.2010.09.004.
[53] ZOUAOUI A, ZILI-GHEDIRA L, NASRALLAH S B. Solid desiccant solar air conditioning unit in Tunisia: Numerical study[J]. International journal of refrigeration, 2017, 74: 662-681. DOI: 10.1016/j.ijrefrig.2016.11.013.
[54] CAMARGO J R, GODOY JR E, EBINUMA C D. An evaporative and desiccant cooling system for air conditioning in humid climates[J]. Journal of the Brazilian society of mechanical sciences and engineering, 2005, 27(3): 243-247. DOI: 10.1590/S1678-58782005000300005.
[55] WHITE S D, KOHLENBACH P, BONGS C. Indoor temperature variations resulting from solar desiccant cooling in a building without thermal backup[J]. International journal of refrigeration, 2009, 32(4): 695-704. DOI: 10.1016/j.ijrefrig.2009.01.019.
Outlines

/