Welcome to visit Advances in New and Renewable Energy!

ZSM-5 Zeolite Production Using Rice Husk Ash

  • YANG Wen-shen ,
  • LANG Lin ,
  • YIN Xiu-li ,
  • WU Chuang-zhi
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640;               
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640

Received date: 2017-11-21

  Revised date: 2018-01-15

  Online published: 2018-02-28

Abstract

ZSM-5 molecular sieves were synthesized by hydrothermal crystallization, using the rice husk ash (RHA) ludox as the Si resource. The effect of hydrothermal reaction time, the template content in the solution and without adding Al resource on the resulting zeolites and residual liquid were investigated, which were characterized by XRD, SEM, ICP and XRF. The results showed that most of the reactants were synthesized into ZSM-5 molecular sieves when the reaction time was 10 ~ 12 h. When the reaction time exceeded 12 h, some of the rest reactants continued to participate in the synthesis, and the crystallinity of the zeolites was improved, while the size of crystal and unit energy consumption increased. When the content of template reduced (SiO2/TPABr = 0.05, 0.04 and 0.01), the crystallinity of the zeolites decreased (89.41%, 81.97% and 69.77%), while little changes of morphology, size and productivity of the crystals were found. The morphology, size and productivity of the synthesized ZSM-5 molecular sieves without adding Al resource did not change significantly, due to the RHA ludox contained certain amount of Al element which derived from the rice husk ash.

Cite this article

YANG Wen-shen , LANG Lin , YIN Xiu-li , WU Chuang-zhi . ZSM-5 Zeolite Production Using Rice Husk Ash[J]. Advances in New and Renewable Energy, 2018 , 6(1) : 8 -13 . DOI: 10.3969/j.issn.2095-560X.2018.01.002

References

[1] LIU Y, GUO Y P, ZHU Y C, et al. A sustainable route for the preparation of activated carbon and silica from rice husk ash[J]. Journal of hazardous materials, 2011, 186(2/3): 1314-1319. DOI: 10.1016/j.jhazmat.2010.12.007.
[2] PANPA W, JINAWATH S. Synthesis of ZSM-5 zeolite and silicalite from rice husk ash[J]. Applied catalysis b: environmental, 2009, 90(3/4): 389-394. DOI: 10.1016/j. apcatb.2009.03.029.
[3] WU C Z, YIN X L, YUAN Z H, et al. The development of bioenergy technology in China[J]. Energy, 2010, 35(11): 4445-4450. DOI: 10.1016/j.energy.2009.04.006.
[4] WU C Z, YIN X L, MA L L, et al. Operational characteristics of a 1.2-MW biomass gasification and power generation plant[J]. Biotechnology advances, 2009, 27(5): 588-592. DOI: 10.1016/j.biotechadv.2009. 04.020.
[5] ZHOU Z Q, MA L L, YIN X L, et al. Study on biomass circulation and gasification performance in a clapboard- type internal circulating fluidized bed gasifier[J]. Biotechnology advances, 2009, 27(5): 612-615. DOI: 10.1016/j.biotechadv.2009.04.016.
[6] 朱永义. 稻谷加工与综合利用[M]. 北京: 中国轻工业出版社, 1999.
[7] VENEZIA A M, LA PAROLA V, LONGO A, et al. Effect of alkali ions on the amorphous to crystalline phase transition of silica[J]. Journal of solid state chemistry, 2001, 161(2): 373-378. DOI: 10.1006/jssc.2001.9345.
[8] ÖHMAN M, NORDIN A, SKRIFVARS B J, et al. Bed agglomeration characteristics during fluidized bed combustion of biomass fuels[J]. Energy & fuels, 2000, 14(1): 169-178. DOI: 10.1021/ef990107b.
[9] SUN L Y, GONG K C. Silicon-based materials from rice husks and their applications[J]. Industrial & engineering chemistry research, 2001, 40(25): 5861-5877. DOI: 10.1021/ie010284b.
[10] CHANDRASEKHAR S, SATYANARAYANA K G, PRAMADA P N, et al. Review processing, properties and applications of reactive silica from rice husk—an overview[J]. Journal of materials science, 2003, 38(15): 3159-3168. DOI: 10.1023/A:1025157114800.
[11] 侯贵华. 稻壳裂解制备SiO2气凝胶的研究[J]. 无机材料学报, 2003, 18(2): 407-412. DOI: 10.3321/j.issn:1000- 324X.2003.02.025.
[12] 丁莲子. 浆种与纸物理特性之关系[J]. 纸和造纸, 2001, 1(2): 31-32.
[13] LING R J, CHEN W, HOU J. Preparation of modified MFI (ZSM-5 and silicalite-1) zeolites for potassium extraction from seawater[J]. Particuology, 2018, 36: 190-192. DOI: 10.1016/j.partic.2017.04.003.
[14] METTA C, TEERAPONG N, PAISA K, et al. Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash[J]. Fuel processing technology, 2004, 85(15): 1623-1634. DOI: 10.1016/j.fuproc.2003.10.026.
[15] 郎林, 王风旵, 张超, 等. 利用稻壳气化残渣制备K-ZSM-5分子筛的研究[J]. 农业机械学报, 2013, 44(9): 107-113. DOI: 10.6041/j.issn.1000-1298.2013.09. 020.
[16] 尹建军, 邢伟静, 李玉波, 等. ZSM-5分子筛结晶度及晶粒大小的影响因素[J]. 分子催化, 2012,26(2), 162-168.
[17] VAN DER BIJ H E, MEIRER F, KALIRAI S, et al. Hexane cracking over steamed phosphated zeolite H-ZSM-5: promotional effect on catalyst performance and stability[J]. Chemistry, 2014, 20(51): 16922-16932. DOI: 10.1002/chem.201404924.
[18] ELLMERS I, VÉLEZ R P, BENTRUP U, et al. SCR and NO oxidation over Fe-ZSM-5-The influence of the Fe content[J]. Catalysis today, 2015, 258: 337-346. DOI: 10.1016/j.cattod.2014.12.017.
[19] LAI S S, SHE Y, ZHAN W C, et al. Performance of Fe-ZSM-5 for selective catalytic reduction of NOx with NH3: effect of the atmosphere during the preparation of catalysts[J]. Journal of molecular catalysis a: chemical, 2016, 424: 232-240. DOI: 10.1016/j.molcata.2016.08.026.
Outlines

/