Welcome to visit Advances in New and Renewable Energy!

Control of Trace Elements on Anaerobic Digestion of Vegetable Waste

  • SUN Juan ,
  • LI Dong ,
  • ZHENG Tao ,
  • LIU Xiao-feng
Expand
  • 1. Institute of Urban and Rural Mines, Changzhou University, Changzhou 213164, Jiangsu, China;
    2. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

Received date: 2017-06-15

  Revised date: 2017-09-13

  Online published: 2018-02-28

Abstract

The anaerobic digestion (AD) system with vegetable waste (VW) as substrate for easy acidification was always operated under low organic loading rate (OLR) with low volumetric methane production rate (VMPR) and then it would result in low efficiency of digester. In this study, continuous AD of VW was carried out in the self-designed 70 L anaerobic reactors under mesophilic conditions (35oC). The trace elements (TE) supplementation was based on the decreasing CH4 content in order to stabilize the process of high OLR for long run-length. When the AD process ran at OLR 2.0 g VS/(L•d) with the CH4 content rapidly decreased from 50% to 40%, through the TE supplementation of 5 days, the CH4 content could quickly return to the stable state 50% ~ 55% from 40%, and VMPR increased from 0.38 L/(L•d) to the stable state of 0.6 L/(L•d). Meanwhile, pH rose from 7.21 to 7.4 and ORP decreased from −509 mV to −530 mV. When the AD process ran at the 20th day of OLR 3.0 g VS/(L•d) after 83 days of the first TE supplementation, the CH4 content decreased from 58.9% to 53.4% again, and then after the TE supplementation of 3 days, the CH4 content could maintain at above 55%. The TE supplementation can effectively improve the OLR and VMPR and stabilize the AD process to increase the utilization of raw materials.

Cite this article

SUN Juan , LI Dong , ZHENG Tao , LIU Xiao-feng . Control of Trace Elements on Anaerobic Digestion of Vegetable Waste[J]. Advances in New and Renewable Energy, 2018 , 6(1) : 21 -25 . DOI: 10.3969/j.issn.2095-560X.2018.01.004

References

[1] 李崇光, 包玉泽. 我国蔬菜产业发展面临的新问题与对策[J]. 中国蔬菜, 2010, 1(15):1-5.
[2] 刘振东, 李贵春, 杨晓梅,等. 我国农业废弃物资源化利用现状与发展趋势分析[J]. 安徽农业科学, 2012, 40(26): 13068-13070. DOI: 10.13989/j.cnki.0517-6611. 2012.26.10
[3] 董永亮. 果蔬废弃物两相厌氧消化特征研究[J]. 能源环境保护, 2011, 25(4): 19-23, 28. DOI: 10.3969/j.issn. 1006- 8759.2011.04.005.
[4] 张丽颖, 姜永海, 邓舟, 等. 城市生物质废物厌氧消化处理可行性分析[J]. 环境科学与技术, 2010, 33(5): 143-146, 150. DOI: 10.3969/j.issn.1003-6504.2010.05.034.
[5] 郝吉明, 马广大, 王书肖. 大气污染控制工程[M]. 3版. 北京: 高等教育出版社, 2010.
[6] 刘广民, 董永亮, 薛建良, 等. 果蔬废弃物厌氧消化特征及固体减量研究[J]. 环境科学与技术, 2009, 32(3): 27-30, 49. DOI: 10.3969/j.issn.1003-6504.2009.03.007.
[7] 贾传兴, 彭绪亚, 黄媛媛, 等. 有机垃圾厌氧消化系统失稳预警指标的研究进展[J]. 中国给水排水, 2011, 27(24): 30-35.
[8] POLAG D, MAY T, MÜLLER L, et al. Online monitoring of stable carbon isotopes of methane in anaerobic digestion as a new tool for early warning of process instability[J]. Bioresource technology, 2015, 197: 161-170. DOI: 10.1016/ j.biortech.2015.08.058.
[9] EVRANOS B, DEMI?REL B. The impact of Ni, Co and Mo supplementation on methane yield from anaerobic mono- digestion of maize silage[J]. Environmental technology, 2015, 36(12): 1556-1562. DOI: 10.1080/ 09593330.2014.997297.
[10] SCHMIDT T, NELLES M, SCHOLWIN F, et al. Trace element supplementation in the biogas production from wheat stillage-optimization of metal dosing[J]. Bioresource technology, 2014, 168: 80-85. DOI: 10.1016/j.biortech. 2014.02.124.
[11] BANKS C J, ZHANG Y, JIANG Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations[J]. Bioresource technology, 2012, 104: 127-135. DOI: 10.1016/j.biortech.2011.10.068.
[12] MOESTEDT J, NORDELL E, YEKTA S S, et al. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste[J]. Waste management, 2016, 47: 11-20. DOI: 10.1016/j.wasman. 2015.03.007.
[13] FERRY J G. The chemical biology of methanogenesis[J]. Planetary and Space Science, 2010, 58(14/15): 1775-1783. DOI: 10.1016/j.pss.2010.08.014.
[14] GLASS J B, ORPHAN V J. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide[J]. Frontiers in microbiology, 2012, 3: 61. DOI: 10.3389/fmicb.2012. 00061.
[15] HOCHHEIMER A, HEDDERICH R, THAUER R K. The formylmethanofuran dehydrogenase isoenzymes in Methano- bacterium wolfei and Methanobacterium thermoauto- trophicum: induction of the molybdenum isoenzyme by molybdate and constitutive synthesis of the tungsten isoenzyme[J]. Archives of microbiology, 1998, 170(5): 389-393. DOI: 10.1007/s002030050658.
[16] SHIMA S, WARKENTIN E, THAUER R K, et al. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen[J]. Journal of bioscience and bioengineering, 2002, 93(6): 519-530. DOI: 10.1016/S1389- 1723(02)80232-8.
[17] LJUNGDHAL L G. The autotrophic pathway of acetate synthesis in acetogenic bacteria[J]. Annual review of microbiology, 1986, 40: 415-450. DOI: 10.1146/ annurev. mi.40.100186.002215.
[18] JARVIS Å, NORDBERG Å, JARLSVIK T, et al. Improvement of a grass-clover silage-fed biogas process by the addition of cobalt[J]. Biomass and bioenergy, 1997, 12(6): 453-460. DOI: 10.1016/S0961-9534(97) 00015-9.
[19] CHOONG Y Y, NORLI I, ABDULLAH A Z, et al. Impacts of trace element supplementation on the performance of anaerobic digestion process: a critical review[J]. Bioresource technology, 2016, 209: 369-379. DOI: 10.1016/j.biortech. 2016.03.028.
Outlines

/