The advanced evaporative and concentration technology receives extensive attention due to the increase of industrial wastewater market size and the average treatment cost in our country these years. Considering the increasing capacity of compressor pressure ratio, a single-stage double-effect mechanical vapor recompression (MVR) system was proposed in this paper. The influences of material concentration, evaporation temperature, compression ratio, temperature difference on the thermal performance of single-stage and double-effect MVR system were studied in detail. The performance analysis curve and energy-saving advantages of single-stage and double-effect MVR system were obtained by comparing with the single stage system. The results showed that the COP of the single-stage and double-effect MVR system reached 25 when the pressure ratio was higher than 1.9; the COP decreased significantly with the increase of the pressure ratio and evaporation temperature. The COP decreased by 4.4% and 3.1%, respectively, with the pressure ratio raise in 0.1 and the first effect evaporation temperature increase 10oC.
LI Shuai-qi
,
WANG Han-zhi
,
HUANG Chong
,
HE Shi-hui
,
SONG Wen-ji
,
FENG Zi-ping
. Performance Analysis of Single-Stage and Double-Effect Evaporative Concentration System Based on MVR Technology[J]. Advances in New and Renewable Energy, 2018
, 6(1)
: 36
-41
.
DOI: 10.3969/j.issn.2095-560X.2018.01.006
[1] 全球环保研究网. 全球及中国工业废水处理行业发展报告[R/OL].(2017-08-21)[2017-08-21].
http://www.gepresearch.com/99/view-759371-1.html.
[2] HAN D, PENG T, HE W F, et al. Advanced energy saving in the evaporation system of ammonium sulfate solution with self-heat recuperation technology[J]. Energy procedia, 2014, 61: 131-136. DOI: 10.1016/j.egypro.2014. 11.923.
[3] 焦冬生. 机械压汽蒸馏技术的实验应用与仿真研究[D]. 合肥: 中国科学技术大学, 2012.
[4] HAN D, YUE C, HE W F, et al. Energy saving analysis for a solution evaporation system with high boiling point elevation based on self-heat recuperation theory[J]. Desalination, 2015, 355: 197-203. DOI: 10.1016/j.desal. 2014.10.044.
[5] ETTOUNEY H. Design of single-effect mechanical vapor compression[J]. Desalination, 2006, 190(1/3): 1-15. DOI: 10.1016/j.desal.2005.08.003.
[6] 高丽丽, 张琳, 杜明照. MVR蒸发与多效蒸发技术的能效对比分析研究[J]. 现代化工, 2012, 32(10): 84-86. DOI: 10.3969/j.issn.0253-4320.2012.10.022.
[7] 邹龙生, 陈德珍, 周伟国, 等. 稠油废水降膜蒸发的传热与垢阻[J]. 热科学与技术, 2014, 13(3): 221-227. DOI: 10.13738/j.issn.1671-8097.2014.03.005.
[8] 邹龙生, 谢加才, 周伟国, 等. 水平管降膜蒸发器综合传热系数研究[J]. 中国电机工程学报, 2011, 31(S1): 175-180. DOI:10.13334/j.0258-8013.pcsee.2011.s1.022.
[9] LIANG L, HAN D, MA R, et al. Treatment of high-concentration wastewater using double-effect mechanical vapor recompression[J]. Desalination, 2013, 314: 139-146. DOI: 10.1016/j.desal.2013.01.016.
[10] 梁林. 处理高浓度含盐废水的机械蒸汽再压缩系统设计及性能研究[D]. 南京: 南京航空航天大学, 2013.
[11] 汤一华. 多效蒸发的实验基础及流程模拟[D]. 上海: 华东理工大学, 2011.
[12] 李刚. 机械蒸汽再压缩技术在高盐废水蒸发浓缩设计中的应用[J]. 新疆化工, 2015(3): 16-19.
[13] 刘立, 张继军, 刘燕, 等. 机械蒸汽再压缩技术在蒸发领域的应用[J]. 化学工程, 2014, 42(11): 1-5. DOI: 10.3969/j.issn.1005-9954.2014.11.001.
[14] 张琳, 蒋枫, 陆凯杰, 等. MVR蒸汽罗茨风机性能对比分析[J]. 化工进展, 2015, 34(6): 1550-1556. DOI: 10.16085/j.issn.1000-6613.2015.06.008.
[15] 谢灼利, 黎明, 张政. 水平管气力输送的数值模拟研究[J]. 高校化学工程学报, 2006, 20(3): 331-337. DOI: 10.3321/j.issn:1003-9015.2006.03.002.
[16] LI Y L, WU H, LIANG X G, et al. Experimental study of waste concentration by mechanical vapor compression technology[J]. Desalination, 2015, 361: 46-52. DOI: 10.1016/j.desal.2015.01.036.
[17] HAN D. Study on zero-emission desalination system based on mechanical vapor recompression technology[J]. Energy procedia, 2015, 75: 1436-1444. DOI: 10.1016/j. egypro.2015.07.250.
[18] ZHOU Y S, SHI C J, DONG G Q. Analysis of a mechanical vapor recompression wastewater distillation system[J]. Desalination, 2014, 353: 91-97. DOI: 10.1016/ j.desal.2014.09.013.
[19] 刘德亮, 程榕, 郑燕萍. 机械蒸汽再压缩蒸发结晶系统模拟分析[J]. 化工时刊, 2014, 28(2): 5-8. DOI: 10.3969/j.issn.1002-154X.2014.02.002.
[20] 刘立. 机械蒸汽再压缩式降膜蒸发系统的设计和性能研究[D]. 天津: 河北工业大学, 2014.