Welcome to visit Advances in New and Renewable Energy!

Geologic Controls on Permafrost-Associated Gas Hydrate Occurrence in the Mackenzie Delta

  • LIU Jie ,
  • SUN Mei-jing ,
  • YANG Rui ,
  • SU Ming ,
  • YANG Chu-peng
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China;
    3. Guangzhou Marine Geological Survey, Guangzhou 510750, China;
    4. School of marine sciences, Sun Yat-sen University, Guangzhou 510640, China

Received date: 2017-06-20

  Revised date: 2017-12-26

  Online published: 2018-02-28

Abstract

The stable condition, distribution and hydrocarbon accumulation characteristics of natural gas hydrate in the Mackenzie Delta area were systemically summarized. The structural condition, sedimentary condition and hydrodynamic field play important roles in the enrichment process of gas hydrate. Permafrost-associated gas hydrate shows characteristics as follows: heterogeneous distribution, gas source from thermogenic gas and coexistence with conventional oil resources in the Mackenzie Delta. Under conditions of temperature and pressure are considered to be uniformed in the bottom of permafrost, the gas hydrate occurrence in the study area is principally controlled by regional main faults, which can offer fluid channel for deep gas source. Coarse clastic sediment can supply favorable storage space, and is a favorable place for the enrichment of high saturation hydrate. Moreover, the permafrost plays a sealing role in hydrate accumulation, good reservoir-cap assemblages are favorable for hydrate accumulation. Besides, the deep overpressure fluid system and shallow gravity flow system are also important factors that influence the migration of natural gas and the occurrence and distribution of hydrate in this area.

Cite this article

LIU Jie , SUN Mei-jing , YANG Rui , SU Ming , YANG Chu-peng . Geologic Controls on Permafrost-Associated Gas Hydrate Occurrence in the Mackenzie Delta[J]. Advances in New and Renewable Energy, 2018 , 6(1) : 47 -54 . DOI: 10.3969/j.issn.2095-560X.2018.01.008

References

[1] SLOAN E D JR. Gas hydrates: review of physical/chemical properties[J]. Energy & fuels, 1998, 12(2): 191-196. DOI: 10.1021/ef970164+.
[2] MAJOROWICZ J A, OSADETZ K G. Gas hydrate distribution and volume in Canada[J]. AAPG bulletin, 2001, 85(7): 1211-1230. DOI: 10.1306/8626CA9B-173B- 11D7-8645000102C1865D.
[3] CHEN Z H, ISSLER D R, OSADETZ K G, et al. Pore pressure patterns in Tertiary successions and hydrodynamic implications, Beaufort-Mackenzie Basin, Canada[J]. Bulletin of Canadian petroleum geology, 2010, 58(1): 3-16. DOI: 10.2113/gscpgbull.58.1.3.
[4] OSADETZ K G, CHEN Z H. A re-evaluation of Beaufort Sea-Mackenzie Delta basin gas hydrate resource potential: petroleum system approaches to non- conventional gas resource appraisal and geologically- sourced methane flux[J]. Bulletin of Canadian petroleum geology, 2010, 58(1): 56-71. DOI: 10.2113/gscpgbull.58.1.56.
[5] SAINT-ANGE F, KUUS P, BLASCO S, et al. Multiple failure styles related to shallow gas and fluid venting, upper slope Canadian Beaufort Sea, northern Canada[J]. Marine geology, 2014, 355: 136-149. DOI: 10.1016/j. margeo.2014.05.014.
[6] DALLIMORE S R, COLLETT T S. Regional gas hydrate occurrences, permafrost conditions, and Cenozoic geology, Mackenzie Delta area[C] //DALLIMORE S R, UCHIDA T, COLLETT T S. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada: Bulletin of the Geological Survey of Canada, 1999(544): 31-43.
[7] 陈欢庆, 王珏, 杜宜静. 储层非均质性研究方法进展[J]. 高校地质学报, 2017, 23(1): 104-116. DOI: 10.16108/ j.issn1006-7493.2016060.
[8] BHADE P, PHIRANI J. Gas production from layered methane hydrate reservoirs[J]. Energy, 2015, 82: 686-696. DOI: 10.1016/j.energy.2015.01.077.
[9] NOGUCHI S, SHIMODA N, TAKANO O, et al. 3-D internal architecture of methane hydrate-bearing turbidite channels in the eastern Nankai Trough, Japan[J]. Marine and petroleum geology, 2011, 28(10): 1817-1828. DOI: 10.1016/j.marpetgeo.2011.02.004.
[10] BOSWELL R, ROSE K, COLLETT T S, et al. Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope[J]. Marine and petroleum geology, 2011, 28(2): 589-607. DOI: 10.1016/j.marpetgeo. 2009.12.004.
[11] 张金昌. 天然气水合物勘探开发: 从马里克走向未来——加拿大北极地区天然气水合物勘探开发情况综述[J]. 地质通报, 2005, 24(7): 106-109. DOI: 10.3969/j.issn. 1671-2552.2005.07.018.
[12] 祝有海. 加拿大马更些冻土区天然气水合物试生产进展与展望[J]. 地球科学进展, 2006, 21(5): 513-520. DOI: 10.3321/j.issn:1001-8166.2006.05.010.
[13] BELLEFLEUR G, RIEDEL M, BRENT T. Seismic characterization and continuity analysis of gas-hydrate horizons near Mallik research wells, Mackenzie Delta, Canada[J]. The leading edge, 2006, 25(5): 599-604. DOI 10.1190/1.2202663.
[14] 卢振权, 祝有海, 张永勤, 等. 青海祁连山冻土区天然气水合物的气源条件及其指示意义[J]. 矿床地质, 2013, 32(5): 1035-1044. DOI: 10.3969/j.issn.0258-7106.2013.05.015.
[15] KHLYSTOV O, DE BATIST M, SHOJI H, et al. Gas hydrate of Lake Baikal: discovery and varieties[J]. Journal of Asian earth sciences, 2013, 62: 162-166. DOI: 10.1016/ j.jseaes.2012.03.009.
[16] COLLETT T S. Energy resource potential of natural gas hydrates[J]. AAPG bulletin, 2002, 86(11): 1971-1992. DOI: 10.1306/61EEDDD2-173E-11D7-8645000102C1865D.
[17] 李明宅, 张洪年. 生物气成藏规律研究[J]. 天然气工业, 1997, 17(2): 6-10.
[18] LORENSON T D, WHITICAR M J, WASEDA A, et al. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well[C] //DALLIMORE S R, UCHIDA T, COLLETT T S. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada: Bulletin of the Geological Survey of Canada, 1999(544): 143-163.
[19] 刘金龙, 王淑红, 颜文. 海洋天然气水合物与深水油气共生关系探讨[J]. 热带海洋学报, 2015, 34(2): 39-51. DOI: 10.11978/j.issn.1009-5470.2015.02.006.
[20] 张金川, 金之钧, 袁明生, 等. 油气成藏与分布的递变序列[J]. 现代地质, 2003, 17(3): 323-330. DOI: 10.3969/j.issn.1000-8527.2003.03.014.
[21] 雷新华, 林功成, 苗永胜, 等. 天然气水合物与传统油气资源共生成藏模式初探[J]. 海相油气地质, 2013, 18(1): 47-52. DOI: 10.3969/j.issn.1672-9854.2013.01.007.
[22] MAJOROWICZ J A, HANNIGAN P K, OSADETZ K G. Study of the natural gas hydrate “Trap Zone” and the methane hydrate potential in the Sverdrup Basin, Canada[J]. Natural resources research, 2002, (11)2: 79-96. DOI: 10.1023/A:1015575918179.
[23] COLLETT T S, LEE M W, AGENA W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope[J]. Marine and petroleum geology, 2011, 28(2): 279-294. DOI: 10.1016/j.marpetgeo.2009. 12.001.
[24] MAKOGON Y F, HOLDITCH S A, MAKOGON T Y. Natural gas-hydrates—A potential energy source for the 21st Century[J]. Journal of petroleum science and engineering, 2007, 56(1/3): 14-31. DOI: 10.1016/j.petrol. 2005.10.009.
[25] ГИНСБУРГ Д, СОЛОВЪЕВ В А. 天然气水合物形成的地质模式[J]. 史斗, 译. 天然气地球科学, 1998, 9(3/4): 1-8.
[26] TORRES M E, WALLMANN K, TRÉHU A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and planetary science letters, 2004, 226(1/2): 225-241. DOI: 10.1016/ j.epsl.2004.07.029.
[27] CHEN Z H, OSADETZ K G, ISSLER D R, et al. Hydrocarbon migration detected by regional temperature field variations, Beaufort-Mackenzie Basin, Canada[J]. AAPG bulletin, 2008, 92(12): 1639-1653. DOI: 10.1306/ 07300808011.
[28] 苏明, 杨睿, 张翠梅, 等. 深水沉积体系研究进展及其对南海北部陆坡区天然气水合物研究的启示[J]. 海洋地质与第四纪地质, 2013, 33(3): 109-116.
[29] WINTERS W J, DALLIMORE S R, COLLETT T S, et al. Physical properties of sediments from the JAPEX/JNOC/ GSC Mallik 2L-38 gas hydrate research well[C]//DALLIMORE S R, UCHIDA T, COLLETT T S. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada: Bulletin of the Geological Survey of Canada,, 1999(544): 95-100.
[30] ROSE K, BOSWELL R, COLLETT T. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: coring operations, core sedimentology, and lithostratigraphy[J]. Marine and petroleum geology, 2011, 28(2): 311-331. DOI: 10.1016/j.marpetgeo.2010.02.001.
[31] DAI S, LEE C, SANTAMARINA J C. Formation history and physical properties of sediments from the Mount Elbert gas hydrate stratigraphic test well, Alaska north slope[J]. Marine and petroleum geology, 2011, 28(2): 427-438. DOI: 10.1016/j.marpetgeo.2010.03.005.
[32] 庞守吉, 苏新, 何浩, 等. 祁连山冻土区天然气水合物地质控制因素分析[J]. 地学前缘, 2013, 20(1): 223-239.
[33] MAJOROWICZ J A, HANNIGAN P K. Natural gas hydrates in the offshore Beaufort–Mackenzie basin—study of a feasible energy source II[J]. Natural resources research, 2000, 9(3): 201-214. DOI: 10.1023/A:1010179301059.
[34] MILKOV A V, SASSEN R. Economic geology of offshore gas hydrate accumulations and provinces[J]. Marine and petroleum geology, 2002, 19(1): 1-11. DOI: 10.1016/ S0264-8172(01)00047-2.
[35] BERG R R, DEMIS W D, MITSDARFFER A R. Hydrodynamic effects on mission canyon (Mississippian) oil accumulations, Billings Nose Area, North Dakota[J]. AAPG bulletin, 1994, 78(4): 501-518. DOI: 10.1306/ bdff9244-1718-11d7-8645000102c1865d.
[36] FREDERICK J M, BUFFETT B A. Submarine groundwater discharge as a possible formation mechanism for permafrost-associated gas hydrate on the circum-Arctic continental shelf[J]. Journal of geophysical research, 2016, 121(3): 1383-1404. DOI: 10.1002/2015JB012627.
[37] 康德江, 庞雄奇, 吕延防, 等. 松辽盆地西斜坡水动力场与油气的聚集成藏[J]. 地球学报, 2008, 29(2): 205-212. DOI: 10.3321/j.issn:1006-3021.2008.02.011.
[38] HOVLAND M, SVENSEN H. Submarine pingoes: indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea[J]. Marine geology, 2006, 228(1/4): 15-23. DOI: 10.1016/j.margeo.2005.12.005.
[39] SEROV P, PORTNOV A, MIENERT J, et al. Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost[J]. Journal of geophysical research, 2015, 120(8): 1515-1529. DOI: 10.1002/2015JF003467.
Outlines

/