To meet the needs of conducting natural gas hydrate simulation experiments, detecting electrical and acoustic parameters and establishing the relationship between the parameters and hydrate saturation, a joint electrical-acoustic detection apparatus was developed first, then a series of methane hydrate formation and decomposition simulation experiments was carried out with electrical and acoustic parameters detected, and finally the electrical and acoustic response characteristics were analyzed and discussed. It has been demonstrated that: (1) the electrical impedance spectra with a wide range of frequencies and ultrasonic signal waveforms can be obtained synchronously by utilizing the joint electrical-acoustic detection apparatus; (2) the space distribution information of electrical and acoustic parameters can be obtained through the designed electrical-acoustic compound sensors, array-arrangement scheme and the ‘time-sharing and rotating’ working mode of sensors; (3) the impedance modulus with a frequency of 100 kHz selected based on the proposed evaluation specifications, i.e. the fluctuation percentage and correlation coefficient, decreases first and then increases with an increasing hydrate saturation, and the fluctuation amplitude of the received ultrasonic signal corrected by effective pressure increases with the increase of hydrate saturation; (4) the 100 kHz impedance modulus and corrected fluctuation amplitude of ultrasonic signal can be treated as effective electrical and acoustic characteristic parameters, respectively, for analyzing and establishing the relationships between the hydrate saturation and them. The apparatus developed in this work provides a necessary condition for future simulation experiments and parameter detection of hydrate-bearing complex sediments, and the proposed effective electrical and acoustic characteristic parameters provide a basis for establishing hydrate saturation calculation models.
[1] MAKOGON Y F. Natural gas hydrates – A promising source of energy[J]. Journal of natural gas science and engineering, 2010, 2(1): 49-59. DOI: 10.1016/j.jngse. 2009.12.004.
[2] CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied energy, 2015, 162: 1633-1652. DOI: 10.1016/j.apenergy.2014.12.061.
[3] 张洪涛, 张海啟, 许振强. 中国天然气水合物[J]. 中国地质调查, 2014, 1(3): 1-6. DOI: 10.19388/j.zgdzdc. 2014.03.001.
[4] 杨胜雄, 梁金强, 刘昌岭, 等. 海域天然气水合物资源勘查工程进展[J]. 中国地质调查, 2017, 4(2): 1-8. DOI: 10.19388/j.zgdzdc.2017.02.01.
[5] 宁伏龙, 刘力, 李实, 等. 天然气水合物储层测井评价及其影响因素[J]. 石油学报, 2013, 34(3): 591-606. DOI: 10.7623/syxb201303026.
[6] 范宜仁, 朱学娟. 天然气水合物储层测井响应与评价方法综述[J]. 测井技术, 2011, 35(2): 104-111. DOI: 10.3969/j.issn.1004-1338.2011.02.002.
[7] RIEDEL M, COLLETT T S, HYNDMAN R D. Gas hydrate concentration estimates from chlorinity, electrical resistivity and seismic velocity[R]. Open File 4934. Ottawa: Geological Survey of Canada, 2005: 1-36.
[8] 陆敬安, 杨胜雄, 吴能友, 等. 南海神狐海域天然气水合物地球物理测井评价[J]. 现代地质, 2008, 22(3): 447-451. DOI: 10.3969/j.issn.1000-8527.2008.03.015.
[9] SHANKAR U, RIEDEL M. Gas hydrate saturation in the Krishna Godavari basin from P-wave velocity and electrical resistivity logs[J]. Marine and petroleum geology, 2011, 28(10): 1768-1778. DOI: 10.1016/j.marpetgeo. 2010.09.008.
[10] 梁劲, 王静丽, 陆敬安, 等. 台西南盆地含天然气水合物沉积层测井响应规律特征及其地质意义[J]. 地学前缘, 2017, 24(4): 32-40. DOI: 10.13745/j.esf.yx.2016-12-32.
[11] LEE M W, COLLETT T S. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India[J]. Journal of geophysical research: solid earth, 2009, 114(B7): B07102. DOI: 10.1029/2008JB006237
[12] KENNEDY W D, HERRICK D C. Conductivity anisotropy in shale-free sandstone[J]. Petrophysics, 2004, 45(1): 38-58.
[13] COOK A E, ANDERSON B I, RASMUS J, et al. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico[J]. Marine and petroleum geology, 2012, 34(1): 72-84. DOI: 10.1016/j.marpetgeo.2011.09.003.
[14] 刘洁, 张建中, 孙运宝, 等. 南海神狐海域天然气水合物储层参数测井评价[J]. 天然气地球科学, 2017, 28(1): 164-172. DOI: 10.11764/j.issn.1672-1926.2016.11.031.
[15] 业渝光, 刘昌岭. 天然气水合物实验技术及应用[M]. 北京: 地质出版社, 2011.
[16] 刘昌岭, 李彦龙, 孙建业, 等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5): 12-26. DOI:10.16562/j.cnki.0256-1492.2017. 05.002.
[17] WINTERS W J. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, determined using gas hydrate and sediment test laboratory instrument (GHASTLI)[J]. Bulletin of the geological survey of Canada, 1999(544): 241-250. DOI: 10.4095/210763.
[18] YUN T S, NARSILIO G A, SANTAMARINA J C, et al. Instrumented pressure testing chamber for characterizing sediment cores recovered at in situ hydrostatic pressure[J]. Marine geology, 2006, 299(3/4): 285-293. DOI: 10.1016/j.margeo.2006.03.012.
[19] LEE J Y, LEE J, JUNG J W, et al. Lab-scale thermal stimulation on natural gas hydrate-bearing sediments sub-samplbed from pressure cores-preliminary results[C]// Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011). Edinburgh, Scotland, United Kingdom, 2011.
[20] 赵洪伟. 海洋天然气水合物相平衡条件模拟实验及探测技术研究[D]. 长春: 吉林大学, 2005.
[21] REN S R, LIU Y J, LIU Y X, et al. Acoustic velocity and electrical resistance of hydrate bearing sediments[J]. Journal of petroleum science and engineering, 2010, 70(1/2): 52-56. DOI: 10.1016/j.petrol.2009.09.001.
[22] 粟科华, 孙长宇, 李楠, 等. 天然气水合物三维成藏物模实验系统的构建与检验[J]. 天然气工业, 2013, 33(12): 173-178. DOI: 10.3787/j.issn.1000-0976.2013.06.027.
[23] 李实, 宁伏龙, 马德胜, 等. 天然气水合物沉积物动三轴力学–声学–电学同步测试的实验装置及方法: CN103323352A[P]. 2013-09-25.
[24] 邢兰昌, 陈强, 刘昌岭. 基于电化学阻抗谱测试方法研究四氢呋喃水合物的生成和分解过程[J]. 岩矿测试, 2015, 34(6): 704-711. DOI: 10.15898/j.cnki.11-2131/td. 2015.06.016.
[25] 李栋梁, 卢静生, 梁德青, 等. 祁连山冻土区天然气水合物形成对岩芯电阻率及介电常数的影响[J]. 新能源进展, 2016(3): 179-183. DOI: 10.3969/j.issn.2095-560X. 2016.03.003.
[26] 邢兰昌, 刘昌岭, 陈强, 等. 一种多孔介质中气水合物模拟实验测试系统及测试方法: WO 2017050142 A1[P]. 2017-03-30.
[27] 邢兰昌, 祁雨, 刘昌岭, 等. 电-声-热多参数联合测试系统开发[J]. 实验技术与管理, 2017, 34(11): 78-85. DOI: 10.16791/j.cnki.sjg.2017.11.021.
[28] 祁雨, 邢兰昌, 刘昌岭, 等. 基于虚拟仪器技术的阻抗分析仪设计与开发[J]. 电子测量技术, 2017, 40(6): 19-24.
[29] PRIEST J A, BEST A I, CLAYTON C R I. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand[J]. Journal of geophysical research: solid earth, 2005, 110(B4): B04102. DOI: 10.1029/ 2004JB003259.
[30] PRIEST J A, REES E V L, CLAYTON C R I. Influence of gas hydrate morphology on the seismic velocities of sands[J]. Journal of geophysical research: solid earth, 2009, 114(B11): B11205. DOI: 10.1029/2009JB006284.
[31] BU Q T, HU G W, YE Y G, et al. The elastic wave velocity response of methane gas hydrate formation in vertical gas migration systems[J]. Journal of geophysics & engineering, 2017, 14(3): 555-569. DOI: 10.1088/ 1742-2140/aa6493.
[32] HU G W, YE Y G, ZHANG J, et al. Acoustic response of gas hydrate formation in sediments from South China Sea[J]. Marine and petroleum geology, 2014, 52: 1-8. DOI: 10.1016/j.marpetgeo.2014.01.007.