Welcome to visit Advances in New and Renewable Energy!

Experimental Study on the Concentrating Characteristics of a Solar Simulator

  • CHU Shun-zhou ,
  • NIE Fu-liang ,
  • CUI Zhi-ying ,
  • GONG Bo ,
  • BAI Feng-wu ,
  • ZHANG Yan
Expand
  • 1. Key Laboratory of Solar Thermal Energy and Photovoltaic System, Chinese Academy of Sciences, Beijing 100190, China;                  
    2. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;                                             
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Beijing Engineering Research Center of Solar Thermal Power, Beijing 100190, China;                                                 
    5. Changchun Shengbo Optical Technology Development Co. Ltd, Changchun 130033, China

Received date: 2018-03-16

  Revised date: 2018-04-30

  Online published: 2018-06-29

Abstract

A high flux solar simulator is essential for evaluating the performance of high-temperature receiver, thermochemical reactors and high-temperature materials under controlled and adjustable flux conditions. This paper presents a new high-flux solar simulator with 19 individual units (each consuming 6 kW electricity), and each of them is composed of a xenon short-arc lamp closely-coupled with a truncated ellipsoidal reflector, a cooling fan and an electric power supply. The input current of the single lamp is in the range of 50 ~ 150 A and the number of units used is flexible, which is capable to provide wide range of flux on the focal plane (10% ~ 100%). The flux distribution, peak flux, power and conversion efficiency intercepted on a circular target plane are evaluated on the base of flux mapping method. According to the test results, the simulator could achieve 8.95 kWth thermal power, peak flux in excess of 2.33 MW/m2 and average irradiance of 545.54 kW/m2 on the focal area with the diameter of 260 mm. The electric-to-thermal conversion efficiency of the simulator is 35%. A new method for evaluating relevant equipment is provided by the proposed solar simulator with the access to the stable and reliable indoor radiation condition.

Cite this article

CHU Shun-zhou , NIE Fu-liang , CUI Zhi-ying , GONG Bo , BAI Feng-wu , ZHANG Yan . Experimental Study on the Concentrating Characteristics of a Solar Simulator[J]. Advances in New and Renewable Energy, 2018 , 6(3) : 188 -194 . DOI: 10.3969/j.issn.2095-560X.2018.03.004

References

[1] STEIN W H, BUCK R. Advanced power cycles for concentrated solar power[J]. Solar energy, 2017, 152: 91-105. DOI: 10.1016/j.solener.2017.04.054.
[2] DUTTA P. High temperature solar receiver and thermal storage systems[J]. Applied thermal engineering, 2017, 124: 624-632. DOI: 10.1016/j.applthermaleng.2017.06.028.
[3] LI Q, BAI F W, YANG B, et al. Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant[J]. Applied energy, 2016, 178: 281-293. DOI: 10.1016/j.apenergy.2016.06.056.
[4] WANG F Z, BAI F W, WANG T J, et al. Experimental study of a single quartz tube solid particle air receiver[J]. Solar Energy, 2016, 123: 185-205. DOI: 10.1016/j.solener. 2015.10.048
[5] WANG T J, BAI F W, CHU S Z, et al. Experiment study of a quartz tube falling particle receiver[J]. Frontiers in energy, 2017, 11(4): 472-479. DOI: 10.1007/s11708-017- 0502-6.
[6] GALLO A, MARZO A, FUENTEALBA E, et al. High flux solar simulators for concentrated solar thermal research: a review[J]. Renewable and sustainable energy reviews, 2017, 77: 1385-1402. DOI: 10.1016/j.rser.2017. 01.056.
[7] PETRASCH J, CORAY P, MEIER A, et al. A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps[J]. Journal of solar energy engineering, 2007, 129(4): 405-411. DOI:10.1115/1.2769701.
[8] CODD D S, CARLSON A, REES J, et al. A low cost high flux solar simulator[J]. Solar energy, 2010, 84(12): 2202-2212. DOI: 10.1016/j.solener.2010.08.007.
[9] LI J, GONZALEZ-AGUILAR J, ROMERO M. Line-concentrating flux analysis of 42kWe high-flux solar simulator[J]. Energy procedia, 2015, 69: 132-137. DOI: 10.1016/j.egypro.2015.03.016.
[10] SARWAR J, GEORGAKIS G, LACHANCE R, et al. Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications[J]. Solar energy, 2014, 100: 179-194. DOI: 10.1016/j.solener.2013.12.008.
[11] XU J L, TANG C, CHENG Y P, et al. Design, construction, and characterization of an adjustable 70 kW high-flux solar simulator[J]. Journal of solar energy engineering, 2016, 138(4): 041010. DOI: 10.1115/1.4033498.
[12] GUESDON C, ALXNEIT I, TSCHUDI H R, et al. PSI’s 1kW imaging furnace—A tool for high-temperature chemical reactivity studies[J]. Solar energy, 2006, 80(10): 1344-1348. DOI: 10.1016/j.solener.2005.04.028.
[13] KRUEGER K R, DAVIDSON J H, LIPIN?SKI W. Design of a new 45 kWe high-flux solar simulator for high-temperature solar thermal and thermochemical research[J]. Journal of solar energy engineering, 2011, 133(1): 011013. DOI: 10.1115/1.4003298.
[14] WAN Z J, QAISRANI M A, DU X C, et al. Experimental study on thermal performance of a water/steam cavity receiver with solar simulator[J]. Energy procedia, 2017, 142: 265-270. DOI: 10.1016/j.egypro.2017.12.042.
[15] WANG W J, AICHMAYER L, GARRIDO J, et al. Development of a Fresnel lens based high-flux solar simulator[J]. Solar energy, 2017, 144: 436-444. DOI: 10.1016/j.solener.2017.01.050.
Outlines

/