Welcome to visit Advances in New and Renewable Energy!

Effect of Solid Acid and Biphasic Solvent System on the Preparation of Furfural

Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China;
    5. PowerChina Water Environment Governance, Shenzhen 518102, Guangdong, China

Received date: 2018-01-31

  Revised date: 2018-03-15

  Online published: 2018-06-29

Abstract

Furfural is an important biomass-based platform compound which has a wide range of applications in production of medicine, pesticide, rubber and petroleum refining, its development has a broad market prospects. Currently, the preparation of furfural is mainly based on taking hemicellulose in biomass as raw material, which is obtained by depolymerization and dehydration reaction. In this article, the reaction mechanism of catalytically producing furfural from biomass and xyloxe, and the research progress of furfural production with various solid acid catalysts in different reaction solvent systems were reviewed, which may provide the some reference to furfural production.

Cite this article

LIU Gui-feng, SHU Feng-yao, HE Chao, WANG Qiong, LIU Shu-na, QI Wei, WANG Zhong-ming, YUAN Zhen-hong, DENG Can . Effect of Solid Acid and Biphasic Solvent System on the Preparation of Furfural[J]. Advances in New and Renewable Energy, 2018 , 6(3) : 229 -238 . DOI: 10.3969/j.issn.2095-560X.2018.03.010

References

[1] ZHANG H Y, WANG Y, SHAO S S, et al. An experimental and kinetic modeling study including coke formation for catalytic pyrolysis of furfural[J]. Combustion and flame, 2016, 173: 258-265. DOI: 10.1016/j.combustflame. 2016.08.019.
[2] YANG J F, LI N, LI S S, et al. Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lingo- cellulose under solvent free conditions[J]. Green chemistry, 2014, 16(12): 4879-4884. DOI: 10.1039/c4gc01314j.
[3] LI G Y, LI N, WANG Z Q, et al. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose[J]. Chemsuschem, 2012, 5(10): 1958-1966. DOI: 10.1002/cssc.201200228.
[4] MARISCAL R, MAIRELES-TORRES P, OJEDA M, et al. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy & environmental science, 2016, 9(4): 1144-1189. DOI: 10.1039/c5ee02666k.
[5] LI X D, JIA P, WANG T F. Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals[J]. ACS catalysis, 2016, 6(11): 7621-7640. DOI: 10.1021/acscatal.6b01838.
[6] DUTTA S, DE S, SAHA B, et al. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels[J]. Catalysis science & technology, 2012, 2(10): 2025-2036. DOI: 10.1039/c2cy20235b.
[7] XING R, QI W, HUBER G W. Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries[J]. Energy & environmental science, 2011, 4(6): 2193-2205. DOI: 10.1039/c1ee01022k.
[8] RAMAN J K, GNANSOUNOU E. Furfural production from empty fruit bunch–a biorefinery approach[J]. Industrial crops and products, 2015, 69: 371-377. DOI: 10.1016/j.indcrop.2015.02.063.
[9] SÁNCHEZ C, SERRANO L, ANDRES M A, et al. Furfural production from corn cobs autohydrolysis liquors by microwave technology[J]. Industrial crops and products, 2013, 42: 513-519. DOI: 10.1016/j.indcrop.2012.06.042.
[10] YEMI? O, MAZZA G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave- assisted reaction[J]. Bioresource technology, 2011, 102(15): 7371-7378. DOI: 10.1016/j.biortech.2011.04.050.
[11] 刘菲, 郑明远, 王爱琴, 张涛. 酸催化制备糠醛研究进展[J]. 化工进展, 2017, 36(1): 156-165. DOI: 10.16085/ j.issn.1000-6613.2017.01.020.
[12] 袁正求, 龙金星, 张兴华, 等. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展. 2016, 28(1): 103-110. DOI: 10.7536/Pc150744.
[13] 蒋建新, 卜令习, 于海龙, 等. 木糖型生物质炼制原理与技术[M]. 北京: 科学出版社, 2013: 58.
[14] CUI J L, TAN J J, DENG T S, et al. Conversion of carbohydrates to furfural via selective cleavage of the carbon-carbon bond: the cooperative effects of zeolite and solvent[J]. Green chemistry, 2016, 18(6): 1619-1624. DOI: 10.1039/c5gc01948f.
[15] YANG Y, HU C W, ABU-OMAR M M. Synthesis of furfural from xylose, xylan, and biomass using AlCl3⋅6H2O in biphasic media via xylose isomerization to xylulose[J]. Chemsuschem, 2012, 5(2): 405-410. DOI: 10.1002/cssc.201100688.
[16] BINDER J B, BLANK J J, CEFALI A V, et al. Synthesis of furfural from xylose and xylan[J]. Chemsuschem, 2010, 3(11): 1268-1272. DOI: 10.1002/cssc.201000181.
[17] BRUCE S M, ZONG Z W, CHATZIDIMITRIOU A, et al. Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent[J]. Journal of molecular catalysis a: chemical, 2016, 422: 18-22. DOI: 10.1016/j.molcata.2016.02.025.
[18] LIMA S, FERNANDES A, ANTUNES M M, et al. Dehydration of xylose into furfural in the presence of crystalline microporous silicoaluminophosphates[J]. Catalysis letters, 2010, 135(1/2): 41-47. DOI: 10.1007/s10562-010-0259-6.
[19] BHAUMIK P, DHEPE P L. Effects of careful designing of SAPO-44 catalysts on the efficient synthesis of furfural[J]. Catalysis today, 2015, 251: 66-72. DOI: 10.1016/j.cattod.2014.10.042.
[20] GAO H L, LIU H T, PANG B, et al. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite[J]. Bioresource technology, 2014, 172: 453-456. DOI: 10.1016/j.biortech.2014.09.026.
[21] CHEN H Z, QIN L Z, YU B. Furfural production from steam explosion liquor of rice straw by solid acid catalysts (HZSM-5)[J]. Biomass and bioenergy, 2015, 73: 77-83. DOI: 10.1016/j.biombioe.2014.12.013.
[22] AGIRREZABAL-TELLERIA I, REQUIES J, GÜEMEZ M B, et al. Dehydration of d-xylose to furfural using selective and hydrothermally stable arenesulfonic SBA-15 catalysts[J]. Applied catalysis B: environmental, 2014, 145: 34-42. DOI: 10.1016/j.apcatb.2012.11.010.
[23] SHI X J, WU Y L, YI H F, et al. Selective preparation of furfural from xylose over sulfonic acid functionalized mesoporous Sba-15 materials[J]. Energies, 2011, 4(4): 669-684. DOI: 10.3390/en4040669.
[24] ZHANG L X, XI G Y, CHEN Z, et al. Highly selective conversion of glucose into furfural over modified zeolites[J]. Chemical engineering journal, 2017, 307: 868-876. DOI: 10.1016/j.cej.2016.09.001.
[25] LIMA S, ANTUNES M M, FERNANDES A, et al. Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material[J]. Applied catalysis A: general, 2010, 388(1/2): 141-148. DOI: 10.1016/j.apcata. 2010.08.040.
[26] ZHANG J H, ZHUANG J P, LIN L, et al. Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase[J]. Biomass and bioenergy, 2012, 39: 73-77. DOI: 10.1016/j.biombioe.2010.07.028.
[27] HARMER M A, SUN Q. Solid acid catalysis using ion-exchange resins[J]. Applied catalysis a: general, 2001, 221(1/2): 45-62. DOI: 10.1016/S0926-860X(01)00794-3.
[28] ZHAO D Y, FENG J L, HUO Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5353): 548-552. DOI: 10.1126/science.279.5350.548.
[29] CHOI M, NA K, KIM J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. DOI: 10.1038/nature08288.
[30] AGIRREZABAL-TELLERIA I, LARREATEGUI A, REQUIES J, et al. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen[J]. Bioresource technology, 2011, 102(16): 7478-7485. DOI: 10.1016/j.biortech.2011.05.015.
[31] JEON W, BAN C, KIM J E, et al. Production of furfural from macroalgae-derived alginic acid over Amberlyst-15[J]. Journal of molecular catalysis a: chemical, 2016, 423: 264-269. DOI: 10.1016/j.molcata.2016.07.020.
[32] LAM E, MAJID E, LEUNG A C W, et al. Synthesis of furfural from xylose by heterogeneous and reusable nafion catalysts[J]. ChemSusChem, 2011, 4(4): 535-541. DOI: 10.1002/cssc.201100023.
[33] LE GUENIC S, GERGELA D, CEBALLOS C, et al. Furfural production from d-Xylose and xylan by using stable nafion NR50 and NaCl in a microwave-assisted biphasic reaction[J]. Molecules, 2016, 21(8): 1102. DOI: 10.3390/molecules21081102.
[34] LAM E, CHONG J H, MAJID E, et al. Carbocatalytic dehydration of xylose to furfural in water[J]. Carbon, 2012, 50(3): 1033-1043. DOI: 10.1016/j.carbon.2011.10.007.
[35] ZHANG T W, LI W Z, XU Z P, et al. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone[J]. Bioresource technology, 2016, 209: 108-114. DOI: 10.1016/j.biortech.2016.02.108.
[36] LIU Q Y, YANG F, SUN X F, et al. Preparation of biochar catalyst with saccharide and lignocellulose residues of corncob degradation for corncob hydrolysis into furfural[J]. Journal of material cycles and waste management, 2017, 19(1): 134-143. DOI: 10.1007/s10163-015-0392-9.
[37] DENG A J, REN J L, LI H L, et al. Corncob lignocellulose for the production of furfural by hydrothermal pretreatment and heterogeneous catalytic process[J]. RSC advances, 2015, 5(74): 60264-60272. DOI: 10.1039/c5ra10472f.
[38] LI H L, WANG X H, LIU C Y, et al. An efficient pretreatment for the selectively hydrothermal conversion of corncob into furfural: the combined mixed bail milling and ultrasonic pretreatments[J]. Industrial crops and products, 2016, 94: 721-728. DOI: 10.1016/j.indcrop.2016.09.052.
[39] QING Q, GUO Q, ZHOU L L, et al. Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride[J]. Bioresource technology, 2017, 226: 247-254. DOI: 10.1016/j.biortech.2016.11.118.
[40] CHEN D W, LIANG F B, FENG D X, et al. Sustainable utilization of lignocellulose: Preparation of furan derivatives from carbohydrate biomass by bifunctional lignosulfonate-based catalysts[J]. Catalysis communications, 2016, 84: 159-162. DOI: 10.1016/j.catcom.2016.06.012.
[41] CHAREONLIMKUN A, CHAMPREDA V, SHOTIPRUK A, et al. Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition[J]. Bioresource technology, 2010, 101(11): 4179-4186. DOI: 10.1016/j.biortech.2010.01.037.
[42] XING Y R, YAN B, YUAN Z F, et al. Mesoporous tantalum phosphates: preparation, acidity and catalytic performance for xylose dehydration to produce furfural[J]. RSC advances, 2016, 6(64): 59081-59090. DOI: 10.1039/c6ra07830c.
[43] CHOUDHARY V, SANDLER S I, VLACHOS D G. Conversion of xylose to furfural using lewis and Brønsted acid catalysts in aqueous media[J]. ACS catalysis, 2012, 2(9): 2022-2028. DOI: 10.1021/cs300265d.
[44] SÁDABA I, LIMA S, VALENTE A A, et al. Catalytic dehydration of xylose to furfural: vanadyl pyrophosphate as source of active soluble species[J]. Carbohydrate research, 2011, 346(17): 2785-2791. DOI: 10.1016/j.carres. 2011.10.001.
[45] GARCÍA-SANCHO C, RUBIO-CABALLERO J M, MÉRIDA-ROBLES J M, et al. Mesoporous Nb2O5 as solid acid catalyst for dehydration of D-xylose into furfural[J]. Catalysis today, 2014, 234: 119-124. DOI: 10.1016/j.cattod.2014.02.012.
[46] ZHU Y, KANAMORI K, BRUN N, et al. Monolithic acidic catalysts for the dehydration of xylose into furfural[J]. Catalysis communications, 2016, 87: 112-115. DOI: 10.1016/j.catcom.2016.09.014.
[47] LI X L, PAN T, DENG J, et al. Catalytic dehydration of D-xylose to furfural over a tantalum-based catalyst in batch and continuous process[J]. RSC advances, 2015, 5(86): 70139-70146. DOI: 10.1039/c5ra11411j.
[48] PHOLJAROEN B, LI N, WANG Z Q, et al. Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system[J]. Journal of energy chemistry, 2013, 22(6): 826-832. DOI: 10.1016/s2095-4956(14)60260-6.
[49] WEINGARTEN R, CHO J, CONNER JR W C, et al. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating[J]. Green chemistry, 2010, 12(8): 1423-1429. DOI: 10.1039/c003459b.
[50] MEHDI H, FÁBOS V, TUBA R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: from sucrose to levulinic acid, γ-Valerolactone, 1,4-Pentanediol, 2-Methyl- tetrahydrofuran, and alkanes[J]. Topics in catalysis, 2008, 48(1/4): 49-54. DOI: 10.1007/s11244-008-9047-6.
[51] XU Z P, LI W Z, DU Z J, et al. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone[J]. Bioresource technology, 2015, 198: 764-771. DOI: 10.1016/j.biortech.2015.09.104.
[52] GÜERBÜEZ E I, GALLO J M R, ALONSO D M, et al. Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone[J]. Angewandte chemie, 2013, 52(4): 1270-1274. DOI: 10.1002/anie.201207334.
[53] LI X K, FANG Z, LUO J, et al. Coproduction of furfural and easily hydrolyzable residue from sugar cane bagasse in the MTHF/Aqueous biphasic system: influence of acid species, NaCl Addition, and MTHF[J]. ACS sustainable chemistry & engineering, 2016, 4(10): 5804-5813. DOI: 10.1021/acssuschemeng.6b01847.
[54] IGLESIAS J, MELERO J A, MORALES G, et al. Dehydration of xylose to furfural in alcohol media in the presence of solid acid catalysts[J]. Chemcatchem, 2016, 8(12): 2089-2099. DOI: 10.1002/cctc.201600292.
[55] MARCOTULLIO G, DE JONG W. Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions[J]. Green chemistry, 2010, 12(10): 1739-1746. DOI: 10.1039/b927424c.
[56] GÜERBÜEZ E I, WETTSTEIN S G, DUMESIC J A. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents[J]. Chemsuschem, 2012, 5(2): 383-387. DOI: 10.1002/cssc. 201100608.
[57] ENSLOW K R, BELL A T. The role of metal halides in enhancing the dehydration of xylose to furfural[J]. Chemcatchem, 2015, 7(3): 479-489. DOI: 10.1002/cctc. 201402842.
Outlines

/