[1] ZHANG H Y, WANG Y, SHAO S S, et al. An experimental and kinetic modeling study including coke formation for catalytic pyrolysis of furfural[J]. Combustion and flame, 2016, 173: 258-265. DOI: 10.1016/j.combustflame. 2016.08.019.
[2] YANG J F, LI N, LI S S, et al. Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lingo- cellulose under solvent free conditions[J]. Green chemistry, 2014, 16(12): 4879-4884. DOI: 10.1039/c4gc01314j.
[3] LI G Y, LI N, WANG Z Q, et al. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose[J]. Chemsuschem, 2012, 5(10): 1958-1966. DOI: 10.1002/cssc.201200228.
[4] MARISCAL R, MAIRELES-TORRES P, OJEDA M, et al. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy & environmental science, 2016, 9(4): 1144-1189. DOI: 10.1039/c5ee02666k.
[5] LI X D, JIA P, WANG T F. Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals[J]. ACS catalysis, 2016, 6(11): 7621-7640. DOI: 10.1021/acscatal.6b01838.
[6] DUTTA S, DE S, SAHA B, et al. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels[J]. Catalysis science & technology, 2012, 2(10): 2025-2036. DOI: 10.1039/c2cy20235b.
[7] XING R, QI W, HUBER G W. Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries[J]. Energy & environmental science, 2011, 4(6): 2193-2205. DOI: 10.1039/c1ee01022k.
[8] RAMAN J K, GNANSOUNOU E. Furfural production from empty fruit bunch–a biorefinery approach[J]. Industrial crops and products, 2015, 69: 371-377. DOI: 10.1016/j.indcrop.2015.02.063.
[9] SÁNCHEZ C, SERRANO L, ANDRES M A, et al. Furfural production from corn cobs autohydrolysis liquors by microwave technology[J]. Industrial crops and products, 2013, 42: 513-519. DOI: 10.1016/j.indcrop.2012.06.042.
[10] YEMI? O, MAZZA G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave- assisted reaction[J]. Bioresource technology, 2011, 102(15): 7371-7378. DOI: 10.1016/j.biortech.2011.04.050.
[11] 刘菲, 郑明远, 王爱琴, 张涛. 酸催化制备糠醛研究进展[J]. 化工进展, 2017, 36(1): 156-165. DOI: 10.16085/ j.issn.1000-6613.2017.01.020.
[12] 袁正求, 龙金星, 张兴华, 等. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展. 2016, 28(1): 103-110. DOI: 10.7536/Pc150744.
[13] 蒋建新, 卜令习, 于海龙, 等. 木糖型生物质炼制原理与技术[M]. 北京: 科学出版社, 2013: 58.
[14] CUI J L, TAN J J, DENG T S, et al. Conversion of carbohydrates to furfural via selective cleavage of the carbon-carbon bond: the cooperative effects of zeolite and solvent[J]. Green chemistry, 2016, 18(6): 1619-1624. DOI: 10.1039/c5gc01948f.
[15] YANG Y, HU C W, ABU-OMAR M M. Synthesis of furfural from xylose, xylan, and biomass using AlCl3⋅6H2O in biphasic media via xylose isomerization to xylulose[J]. Chemsuschem, 2012, 5(2): 405-410. DOI: 10.1002/cssc.201100688.
[16] BINDER J B, BLANK J J, CEFALI A V, et al. Synthesis of furfural from xylose and xylan[J]. Chemsuschem, 2010, 3(11): 1268-1272. DOI: 10.1002/cssc.201000181.
[17] BRUCE S M, ZONG Z W, CHATZIDIMITRIOU A, et al. Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent[J]. Journal of molecular catalysis a: chemical, 2016, 422: 18-22. DOI: 10.1016/j.molcata.2016.02.025.
[18] LIMA S, FERNANDES A, ANTUNES M M, et al. Dehydration of xylose into furfural in the presence of crystalline microporous silicoaluminophosphates[J]. Catalysis letters, 2010, 135(1/2): 41-47. DOI: 10.1007/s10562-010-0259-6.
[19] BHAUMIK P, DHEPE P L. Effects of careful designing of SAPO-44 catalysts on the efficient synthesis of furfural[J]. Catalysis today, 2015, 251: 66-72. DOI: 10.1016/j.cattod.2014.10.042.
[20] GAO H L, LIU H T, PANG B, et al. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite[J]. Bioresource technology, 2014, 172: 453-456. DOI: 10.1016/j.biortech.2014.09.026.
[21] CHEN H Z, QIN L Z, YU B. Furfural production from steam explosion liquor of rice straw by solid acid catalysts (HZSM-5)[J]. Biomass and bioenergy, 2015, 73: 77-83. DOI: 10.1016/j.biombioe.2014.12.013.
[22] AGIRREZABAL-TELLERIA I, REQUIES J, GÜEMEZ M B, et al. Dehydration of d-xylose to furfural using selective and hydrothermally stable arenesulfonic SBA-15 catalysts[J]. Applied catalysis B: environmental, 2014, 145: 34-42. DOI: 10.1016/j.apcatb.2012.11.010.
[23] SHI X J, WU Y L, YI H F, et al. Selective preparation of furfural from xylose over sulfonic acid functionalized mesoporous Sba-15 materials[J]. Energies, 2011, 4(4): 669-684. DOI: 10.3390/en4040669.
[24] ZHANG L X, XI G Y, CHEN Z, et al. Highly selective conversion of glucose into furfural over modified zeolites[J]. Chemical engineering journal, 2017, 307: 868-876. DOI: 10.1016/j.cej.2016.09.001.
[25] LIMA S, ANTUNES M M, FERNANDES A, et al. Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material[J]. Applied catalysis A: general, 2010, 388(1/2): 141-148. DOI: 10.1016/j.apcata. 2010.08.040.
[26] ZHANG J H, ZHUANG J P, LIN L, et al. Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase[J]. Biomass and bioenergy, 2012, 39: 73-77. DOI: 10.1016/j.biombioe.2010.07.028.
[27] HARMER M A, SUN Q. Solid acid catalysis using ion-exchange resins[J]. Applied catalysis a: general, 2001, 221(1/2): 45-62. DOI: 10.1016/S0926-860X(01)00794-3.
[28] ZHAO D Y, FENG J L, HUO Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5353): 548-552. DOI: 10.1126/science.279.5350.548.
[29] CHOI M, NA K, KIM J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. DOI: 10.1038/nature08288.
[30] AGIRREZABAL-TELLERIA I, LARREATEGUI A, REQUIES J, et al. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen[J]. Bioresource technology, 2011, 102(16): 7478-7485. DOI: 10.1016/j.biortech.2011.05.015.
[31] JEON W, BAN C, KIM J E, et al. Production of furfural from macroalgae-derived alginic acid over Amberlyst-15[J]. Journal of molecular catalysis a: chemical, 2016, 423: 264-269. DOI: 10.1016/j.molcata.2016.07.020.
[32] LAM E, MAJID E, LEUNG A C W, et al. Synthesis of furfural from xylose by heterogeneous and reusable nafion catalysts[J]. ChemSusChem, 2011, 4(4): 535-541. DOI: 10.1002/cssc.201100023.
[33] LE GUENIC S, GERGELA D, CEBALLOS C, et al. Furfural production from d-Xylose and xylan by using stable nafion NR50 and NaCl in a microwave-assisted biphasic reaction[J]. Molecules, 2016, 21(8): 1102. DOI: 10.3390/molecules21081102.
[34] LAM E, CHONG J H, MAJID E, et al. Carbocatalytic dehydration of xylose to furfural in water[J]. Carbon, 2012, 50(3): 1033-1043. DOI: 10.1016/j.carbon.2011.10.007.
[35] ZHANG T W, LI W Z, XU Z P, et al. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone[J]. Bioresource technology, 2016, 209: 108-114. DOI: 10.1016/j.biortech.2016.02.108.
[36] LIU Q Y, YANG F, SUN X F, et al. Preparation of biochar catalyst with saccharide and lignocellulose residues of corncob degradation for corncob hydrolysis into furfural[J]. Journal of material cycles and waste management, 2017, 19(1): 134-143. DOI: 10.1007/s10163-015-0392-9.
[37] DENG A J, REN J L, LI H L, et al. Corncob lignocellulose for the production of furfural by hydrothermal pretreatment and heterogeneous catalytic process[J]. RSC advances, 2015, 5(74): 60264-60272. DOI: 10.1039/c5ra10472f.
[38] LI H L, WANG X H, LIU C Y, et al. An efficient pretreatment for the selectively hydrothermal conversion of corncob into furfural: the combined mixed bail milling and ultrasonic pretreatments[J]. Industrial crops and products, 2016, 94: 721-728. DOI: 10.1016/j.indcrop.2016.09.052.
[39] QING Q, GUO Q, ZHOU L L, et al. Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride[J]. Bioresource technology, 2017, 226: 247-254. DOI: 10.1016/j.biortech.2016.11.118.
[40] CHEN D W, LIANG F B, FENG D X, et al. Sustainable utilization of lignocellulose: Preparation of furan derivatives from carbohydrate biomass by bifunctional lignosulfonate-based catalysts[J]. Catalysis communications, 2016, 84: 159-162. DOI: 10.1016/j.catcom.2016.06.012.
[41] CHAREONLIMKUN A, CHAMPREDA V, SHOTIPRUK A, et al. Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition[J]. Bioresource technology, 2010, 101(11): 4179-4186. DOI: 10.1016/j.biortech.2010.01.037.
[42] XING Y R, YAN B, YUAN Z F, et al. Mesoporous tantalum phosphates: preparation, acidity and catalytic performance for xylose dehydration to produce furfural[J]. RSC advances, 2016, 6(64): 59081-59090. DOI: 10.1039/c6ra07830c.
[43] CHOUDHARY V, SANDLER S I, VLACHOS D G. Conversion of xylose to furfural using lewis and Brønsted acid catalysts in aqueous media[J]. ACS catalysis, 2012, 2(9): 2022-2028. DOI: 10.1021/cs300265d.
[44] SÁDABA I, LIMA S, VALENTE A A, et al. Catalytic dehydration of xylose to furfural: vanadyl pyrophosphate as source of active soluble species[J]. Carbohydrate research, 2011, 346(17): 2785-2791. DOI: 10.1016/j.carres. 2011.10.001.
[45] GARCÍA-SANCHO C, RUBIO-CABALLERO J M, MÉRIDA-ROBLES J M, et al. Mesoporous Nb2O5 as solid acid catalyst for dehydration of D-xylose into furfural[J]. Catalysis today, 2014, 234: 119-124. DOI: 10.1016/j.cattod.2014.02.012.
[46] ZHU Y, KANAMORI K, BRUN N, et al. Monolithic acidic catalysts for the dehydration of xylose into furfural[J]. Catalysis communications, 2016, 87: 112-115. DOI: 10.1016/j.catcom.2016.09.014.
[47] LI X L, PAN T, DENG J, et al. Catalytic dehydration of D-xylose to furfural over a tantalum-based catalyst in batch and continuous process[J]. RSC advances, 2015, 5(86): 70139-70146. DOI: 10.1039/c5ra11411j.
[48] PHOLJAROEN B, LI N, WANG Z Q, et al. Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system[J]. Journal of energy chemistry, 2013, 22(6): 826-832. DOI: 10.1016/s2095-4956(14)60260-6.
[49] WEINGARTEN R, CHO J, CONNER JR W C, et al. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating[J]. Green chemistry, 2010, 12(8): 1423-1429. DOI: 10.1039/c003459b.
[50] MEHDI H, FÁBOS V, TUBA R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: from sucrose to levulinic acid, γ-Valerolactone, 1,4-Pentanediol, 2-Methyl- tetrahydrofuran, and alkanes[J]. Topics in catalysis, 2008, 48(1/4): 49-54. DOI: 10.1007/s11244-008-9047-6.
[51] XU Z P, LI W Z, DU Z J, et al. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone[J]. Bioresource technology, 2015, 198: 764-771. DOI: 10.1016/j.biortech.2015.09.104.
[52] GÜERBÜEZ E I, GALLO J M R, ALONSO D M, et al. Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone[J]. Angewandte chemie, 2013, 52(4): 1270-1274. DOI: 10.1002/anie.201207334.
[53] LI X K, FANG Z, LUO J, et al. Coproduction of furfural and easily hydrolyzable residue from sugar cane bagasse in the MTHF/Aqueous biphasic system: influence of acid species, NaCl Addition, and MTHF[J]. ACS sustainable chemistry & engineering, 2016, 4(10): 5804-5813. DOI: 10.1021/acssuschemeng.6b01847.
[54] IGLESIAS J, MELERO J A, MORALES G, et al. Dehydration of xylose to furfural in alcohol media in the presence of solid acid catalysts[J]. Chemcatchem, 2016, 8(12): 2089-2099. DOI: 10.1002/cctc.201600292.
[55] MARCOTULLIO G, DE JONG W. Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions[J]. Green chemistry, 2010, 12(10): 1739-1746. DOI: 10.1039/b927424c.
[56] GÜERBÜEZ E I, WETTSTEIN S G, DUMESIC J A. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents[J]. Chemsuschem, 2012, 5(2): 383-387. DOI: 10.1002/cssc. 201100608.
[57] ENSLOW K R, BELL A T. The role of metal halides in enhancing the dehydration of xylose to furfural[J]. Chemcatchem, 2015, 7(3): 479-489. DOI: 10.1002/cctc. 201402842.